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Abstract

Over the past ten to fifteen years botnets have gained
the attention of researchers worldwide. A great deal of
effort has been given to developing systems that would
efficiently and effectively detect the presence of a botnet.
This unique problem saw researchers applying machine
learning (ML) to solve this problem. In this paper, a
brief overview of the varied machine learning methods
(ML) and their utility in relation to botnet detection is
provided. The main aim of this paper is to clearly define
the role different ML methods play in Botnet detection.
We also examine different flow level feature subsets and
the resulting impact on detection accuracy given the
machine learning method used. A clear understanding
of these various roles are critical for developing effective
and efficient real-time online-detection approaches and
ultimately, more robust models. In conclusion, it was
found that, the features selected must compliment the
machine learning method chosen.

1. Introduction

 Individuals and businesses have become more 
depen-dent on Internet services and information 
systems to ef-ficiently and effectively carry out their 
everyday tasks. Consequently, the need for protecting 
the confidential-ity, integrity and availability of these 
systems has never been greater. Botmasters can use the 
aggregated power of many bots to exponentially 
intensify the impact of ma-licious activities. A single 
bot may not be a danger for the Internet, but a network 
of bots will definitely be able to create a huge 
disturbance [18]. We have reviewed sev-eral proposed 
ML-Based botnet-detection systems. Tak-ing into 
consideration the ML Method, we explore the role of 
each.

This paper is arranged as follows: Section 2 highlights
work related to botnet detection systems. Section 3 gives
an overview of the botnet phenomenon, describing the

way in which bots work, different types of bots and the
botnet life cycle. Section 4, botnet-detection, highlights
the varied botnet detection techniques and approaches
and their significance as it relates to the different machine
learning methods. Section 5 provides a brief description
of what machine learning entails and the features used to
create theses models. Section 6 evaluates the role of the
ML method embodied in each botnet detection approach.
Section 7 describes the manner in which the dataset was
obtained and prepared and details processes by which the
classes are distributed. Additionally, this section presents
the results from each model and feature subset combina-
tion. In conclusion section 8 evaluates both what has
been established in the literature and the results as high-
lighted in the previous section.

2. Related Work

  Several authors have written reviews of botnet-
detection approaches as well as detection techniques. 
Maryam Feily [2] conducted a survey of botnets and bot 
detection, explaining the way in which bots operate; 
examining dif-ferent botnet-detection approaches placing 
botnets in one of three classes, namely anomaly-based, 
DNS based or Mining based detection. The paper also 
surveyed botnets and botnet detection, its aim was to 
explain the botnet phenomena and explore different 
botnet detection tech-niques. The paper classified 
botnet detection into four classes, namely: anomaly-
based, signature-based, DNS-based, and mining- based. 
Along with the summarization of each class, detection 
techniques were compared.

Thomas Hyslip et al [3] surveyed botnet detection
techniques based on their command and control infras-
tructure. With a focus on bot detection technique, this
review examined various detection techniques and their
impact on different botnet architectures.

Michael Bailey et al surveyed bot technology and de-
fenses [4]. This survey scrutinized different detection
methods in light of the data source which provide the



bases for detection, examples of such sources are DNS,
net flow, packet tap etc. They moreover examined dif-
ferent techniques used by detection methods inclusive of
detection based on group behavior and detection based
on signature. This survey paper also examined existing
botnet research, the evolution and the future of botnets.

Stevanovic [1] surveyed machine learning based bot-
net detection approaches. His paper proffered a review
of current machine learning based botnet detection meth-
ods for identifying botnet-related traffic. An overview on
this area of study was given by summarizing the recent
scientific efforts in this arena. His paper also examined
each method and their susceptibility to various resilience
techniques which may be employed by botmasters. Also
examined was the result generated from each technique,
the algorithm used and features chosen. Akin to this pa-
per our focus is on ML-based botnet detection methods.
The difference is that our paper explores how distinct re-
searchers used ML- Methods to overcome specific chal-
lenges.

The main direction of this paper is a refocusing on
ML-based approaches introduced by various researchers,
using different ML methods to detect botnet activity. The
main aim of this study is to determine which combination
of ML method features and techniques is optimal when
tackling the botnet detection dilemma.

3. The Botnet Phenomenon

  A botnet is a network of infected computers, 
(referred to as zombies or bots), enslaved by an 
attacker to carry out their bidding. The users whose 
computers make up the bots in a botnet are usually 
ignorant of the fact that their systems have been 
compromised and are potentially taking part in malicious 
activities.

The resources of the infected computer - (bot), are un-
der the control of the attacker - (botmaster), who uses
these resources for his own agenda. Commands are given
and received through communication between the en-
slaved computers and their botmaster via what is known
as a command and control server, (C&C). The botnet
life-cycle is described in four stages by Leonard et al.
[19]

1. Formation (also called infection)

2. Command and Control environment

3. Attack

4. Post Attack

At the formation stage, the bot is installed on the users
machine by exploiting vulnerabilities, an aspect of this
malicious code is responsible for connecting the bot to

its command and control server (C&C). After establish-
ing C&C connection, the botmaster is able to send com-
mands to the newly-added bot. This then transitions into
the attack phase, whereupon instructions from the bot-
master to the bots in the botnet through the C&C chan-
nel, attack commands are issued. Following an attack,
bots may become exposed and cured, that is, the vulner-
abilities which were exploited may be patched. The goal
then of the botmaster is to recruit more bots - (post at-
tack), and thus, cycle continues.

3.1. Command and Control architectures

  The command and control channel (C&C) is the 
back-bone of a botnet. The C&C channel is that 
link be-tween the botmaster and the bot. Unique to 
bot mal-ware, the C&C channel is its defining 
characteristic [1]. The C&C channel is used to send 
instructions to bots as well as receive information 
from them. C&C chan-nels are usually one of three 
architectures: centralized, decentralized or hybrid (see 
fig 1). In a centralized bot-net, all the bots in the 
network connect to the same C&C server(s), controlled 
by a single botmaster. In contrast to other architectures 
this has the lowest latency of commu-nication. 
Decentralized C&C architectures are designed with 
resilience in mind. Void of a central point of failure, like 
that of centralized C&C architectures, these botnets 
posses multiple paths for sending instructions. The de-
centralized C&C makes use of peer to peer (P2P) com-
munication protocols as the means for connecting to the 
infected machines. Hybrid approaches seek to combine 
the principles of the other two architectures by using 
hybrid P2P protocols alongside the low network delay 
found in centralized architectures.

4. Botnet Detection 
  As botnets become more threatening, researchers 
and security experts employ different approaches and 
tech-niques to solve the problem. The detection 
approach defines how the solution operates, such as 
detection by behavior [13] or signature [6]. Different 
techniques are based on different approaches. ML-based 
detection tech-niques are capable of using both 
approaches. Other tech-niques used in bot detection 
include anomaly and DNS.

4.1. Detection Approaches
 Signature-based approaches require detailed 
knowledge of what a bot or bot-related characteristics, 
(e.g. traf-fic), may look like. This approach is used to 
target spe-cific characteristics such as a particular 
protocol [26] or service. This type of approach tends to 
be very precise and specific. Anything outside the 
specified scope will



Figure 1. Botnet architectures: i) Centralized ii) Decentralized iii) Hybrid

go undetected. This approach is very effective against
known botnets, but on the other hand are not very useful
for unknown bots and are in actuality more susceptible
to evasion techniques.

Detection based on bot behavior involves describing a
model of how botnets generally operate. The generality
of this approach makes it possible to capture new or un-
seen bots. However, if the model becomes too general
the false positive rate may become high. In behavioral
approaches, researchers make assumptions based on ob-
servations about core behaviors of botnets. For botnet
detection, the main assumption across approaches is that
bots operate in a cooperative manner, engaging in some
form of group activity at varying stages of the botnet life
cycle [7, 8, 13]. Whereas specific knowledge of a partic-
ular bot drives signature-based approaches, a clear def-
inition of bots behavior is at the core of behavioral ap-
proaches.

4.2. Detection techniques

   Anomaly-based detection techniques aims to detect 
bots based on abnormal network activities, such as 
ab-normally high traffic, high latency and unusual 
port activities. This is a definite decisive 
limitation for anomaly-based techniques considering 
that bots are inclined to employ normal

protocols for C&C communi-cation. Anomaly-based 
techniques applies a behavioral approach to bot 
detection, thus, it is able to detect abnor-mal activities or 
behavior for unknown bots.

DNS-based detection techniques operate based on
DNS information produced by botnets [8]. C&C com-
munication channels are unique to bot malware; bots in-
teract with C&C servers through these channels. To gain
access to these servers, bots perform DNS queries. The
aim of DNS-based approaches is to capture unusual DNS
traffic in order to identify bots.

ML-based detection techniques have been considered
to be the most effective at detecting botnets [1, 2, 3]. The
basis for its effectiveness lies within its ability to identify
bot related traffic within normal traffic [2]. This poses
a challenge for other techniques as bots utilize normal
protocols to mask C&C communication. However, ML-
detection requires a sufficient amount of training exam-
ples and well-defined features to be optimally effective.
As the focus of this paper, machine learning will be dis-
cussed in more detail in the following sections.

4.3. Scope of detection

  Among the botnet detection approaches observed in 
the relevant literature, each had one goal regarding 
scope of detection, group activity or individual hosts.



The re-lationship between the scope of detection and 
the ML method chosen, demonstrate a great affinity for 
using un-supervised learning methods when the goal is 
group de-tection, and supervised when targeting 
individual hosts.

Detecting bots based on group activity assumes co-
ordinated activities by bots in the same botnet. Distin-
guished by similar traffic patterns, the aim is to identify
all the bots in the network based on their collective ac-
tion rather that their individual operations. Unlike Group
based detection, individual hosts are classified based on
their individual actions and characteristics irrespective of
the activity of the group they might be a part of.

5. Machine Learning

  Machine learning (ML) is a branch of artificial 
intelli-gence that aims to develop systems with the 
ability to learn from past experience. In machine 
learning, data,(past experience), is given as input to a 
ML algorithm to derive patterns probable in order to 
create a model that represents the data. The main 
concern in this field is, How do we develop computer 
programs that auto-matically improve with experience? 
At the core of ML are statistical and computational 
principles derived from concepts that exist in many 
disciplines such as artifi-cial intelligence, philosophy, 
information theory, biol-ogy, cognitive science, 
computational complexity and control theory [16].

The aim of ML is to create a model based on the data
given. This model describes the patterns that exist in the
data, which should be able to make informed decisions
given new (unseen) data.

5.1. Machine learning Features

  For any machine learning task, the two most 
important decisions to address are deciding what features 
to use and which ML-Method (supervised, 
unsupervised) to select. The features selected will shape 
the type of model that is formed. Features are able to 
represent behaviors or tar-get specific characteristics. 
The ML-method chosen will impact how the model 
behaves, one method may create a model whose main 
concern is how different bots interact with each other 
while another model concerns itself with how individual 
bots operate.

Feature selection is the process of extracting the best
subset of variables from all possible variables that most
accurately represent the data. In botnet detection, the aim
of the feature selection process is to select a subset of
features that will best describe the behavior of bots or
the specific bot being targeted. The features selected will
depend on the type of data being used. Number of query
lookup may be a feature from DNS data[8], Source and

destination IP [15] for net flow data, checksum are fea-
tures from packet top data. For ML-based detection most
researchers chose net flow, (Traffic Flow) data. Traffic
flow is an artificial logical equivalent to a call or connec-
tion as a sequence of packets sent from a particular uni-
cast or multicast destination [20]. From this, flow-level
features are derived. These features describe how each
node on a particular network interact with other nodes.
Examples of flow-level features are: flow duration, aver-
age byte per packet per flow, who indicated the connec-
tion (client or server). The features selected will support
a particular approach. Flow-level features will support
a behavioral approach, while packet level features that
capture specific characteristics will support a signature-
based approach.

The underlying hypothesis for ML-based botnet detec-
tion is, bots produce unique patterns hidden in network
traffic or client machine activities. It is opinoined that
on implementing some form of ML method, one may be
able to uncover these patterns to successfully detect ma-
licious activity.

6. Machine Learning Methods Used in 
Botnet Detection

  In this section we will evaluate the role of each 
technique in bot detection based on how each has been 
used. Eval-uations of each technique will be separated 
as follows: firstly, an overview of the technique, and 
secondly, a brief look at how the technique has been used 
in the literature.

6.1. Supervised Learning (SL)

   In supervised ML, models are built from labeled 
training data. The aim is to create a model (function h) 
that rep-resents the data, described by a function (h) 
that maps input variables x to their appropriate target y 
(fig 2). This function is sometimes referred to as the 
hypothesis h(x).

There is also a distinction among supervised learning
methods based on how the data is labeled. Supervised
learning problems may be categorized as regression or
classification. For regression problems, the labeled target
values represent a range of values.

For classification problems, input variables are as-
signed to classes based on patterns represented in the
data. Classification algorithms are concerned with the
relationship between class label and input variables. Bot-
net detection is an example of such a problem, where we
are trying to determine what class a packet or sequence
of packet may be assigned to, i.e. Botnet or Not botnet
traffic.



Table 1: Table I - Role of ML-Method in Botnet detection Systems
Detection System ML Method Scope of detection Detection approach True Positive Rate (TPR) False Positive Rate (FPR)

David Zhao et al [15] Supervised Individual Signature (P2P) 98% 2.3%
Carl Livadas et al [6] Supervised Individual Signature (IRC) NA 10% — 20%
Leyla Bilge et al [11] Supervised Individual Signature ( C&C Server) 87% 20%

F Sanchez et al [9] Supervised Individual Signature 91% 0.56%
W. T Strayer et al [5] Supervised Individual Signature (IRC) NA 30%
Guofei Gu et al [7] Unsupervised Group Behavior 99% 1%

Yu et al [13] Unsupervised Group Behavior 100% 20%
Hyunsang Choi et al [8] Unsupervised Group Behavior 95% 4%

Lei Zhang et al [14] Unsupervised Group Signature 100% 0.2%
Wei Lu et al [12] Unsupervised Group Signature 95% NA

Figure 2. Showing relationship between ML domain x 
and targets y

6.2. The Role of Supervised Learning (SL)

    In 2006, Livadas et al presented a network-based 
botnet detection approach based on supervised machine 
learn-ing techniques. The authors conducted an 
evaluation of three different machine learning methods 
for identifying IRC Botnets. Detection was carried out 
in two phases: the first phase classifies traffic based on 
IRC traffic and the second phase classifies IRC chat 
flows as bot-net or real chat flows.
Features Used:

1. Flow Duration
2. Maximum initial congestion window
3. Indicator of whether or not client or server initiated

flow
4. Average byte per packet for flow
5. Average bits per second for flow
6. Average packets per second for flow
7. Percent of packets pushed in flow
8. Percent of packets in one of eight packet size bins
9. Variance of packet inter arrival time.

10. Variance of bytes per packet for flow

Strayer et al introduced an approach that targets IRC
bots. This approach is broken into four stages. In the
first stage, flows that are most likely to not have C&C
data are filtered out based on knowledge of IRC bots, be-
havioral patterns and characteristics in flow. The second
stage uses supervised learning to identify suspicious traf-
fic flows. The third stage groups flows based on similar
predefined characteristics. The groups then advance to
the fourth stage which uses topological analysis to deter-
mine flows with the same controller. The flows with the
same controller are finally examined to see if they are a
part of a botnet or not.
Features Used:

1. Flow Start time
2. Flow end time
3. Flow protocol
4. Summary of TCP flags
5. Total number of packets exchanged in flow
6. Total number of bytes exchanged in flow
7. Total number of packets pushed in flow
8. Flow duration
9. Maximum congestion window size

10. Indicator of whether or not client or server initiated
flow

11. Average bits per second for flow
12. Average packets per second for flow
13. Percent of packets pushed in flow
14. Percent of packets in one of eight packet size bins
15. Variance of packet inter arrival time.
16. Variance of bytes per packet for flow

Liao et al proposed a method that uses supervised
learning techniques to identify P2P bots. The first stage
of this two-stage approach involves feature extraction. In
this stage, specific features which may be used to charac-
terize P2P bots are extracted from the traffic flows. The
features of these flows are passed to the second stage
where supervised learning algorithm is used to classify
each flow.
Features Used:



1. Indicator of synchronous session
2. Average number of bytes per flow
3. Average length of packet in flow
4. Standard deviation of number of bytes per flow.
5. Standard deviation of number of packets in flow.
6. Number of small sessions.
7. Percent of small packets
8. Average size of packets
9. Standard deviation of packet size

10. Average number of packets per flow
11. Percent of packets per flow
12. Number of small packets
13. Number of null packets

Shin et al introduced a bot detection system that clas-
sifies bots based on activities both on the network and
the client’s computer. This method has five modules
(M1-M5) that correlate bot-related activities on the net-
work and individual clients. The first module M1 is
the human-process-network correlation analysis module.
This module detects malicious processes by monitoring
human process on the host relating to the keyboard and
mouse and correlating them with network activity. The
system checks the time difference between a process pro-
duced by a mouse click or keyboard event, the source of
the event, and whether or not the process is running in the
foreground at that time, is also taken into consideration.
A small time difference may indicate that the process
was generated by a human otherwise this process will
be marked as suspicious and forwarded to the M2, M3
and M4. M2 and M3 uses supervised learning to classify
queried domains names as malicious or benign and clas-
sify malicious behavior on host computers respectively.
M4 monitors traffic generated by the suspicious process
on the hosts network interface. Incoming packets and
exchange rate between process and the remote site are
compared. Once the exchange ratio is smaller than a pre-
defined value, bot behavior is suspected. Finally, after
each module makes its decision, the correlation engine -
M5, combines the results to determine the final decision
using a weighted voting scheme.
Features Used:

1. Time difference between current date and domain
expiration date

2. Time difference between domain
3. Number of domain registration
4. Indicator of whether a target domain can be found

on blacklist or not
5. Indicator if the domain names are contacted by the

process
6. Indicator of the domain queried by the process fre-

quently

6.3. Unsupervised Learning (UL)

  Unsupervised Learning is the area of machine 
learning concerned with developing systems which can 
learn how to represent patterns in a data set based 
solely on input variables. The main aim of such a 
learner is to estab-lish a function to describe hidden 
patterns in unlabeled data. The absence of target 
values (y), or external en-vironmental evaluation, is 
what distinguishes unsuper-vised learning from 
supervised and reinforcement learn-ing [17]. The most 
common form of unsupervised learn-ing is called 
clustering. This is an unsupervised learn-ing technique 
used to find similarity in unlabeled data by grouping 
them in sections called clusters.

Given that all data points looks the same (unlabeled),
the aim of a clustering algorithm is to understand the re-
lationship between each data points and group them ac-
cordingly. In the same way, as it relates to botnet detec-
tion, clustering algorithms have been used to group traf-
fic of similar characteristics in an effort to single out and
identify traffic with malicious intent. The Botminer de-
tection system [7] clusters similar communication traffic
and similar malicious traffic and performs cross cluster
correlation to identify the hosts that share both similar
communication patterns and similar malicious activity
patterns.

6.4. The Role of Unsupervised Learning (UL)

   Yu et al. proposed a method for online detection using 
the k-means clustering algorithm to group bot related 
traffic. The approach uses network flow features [20] in 
prede-fined time windows. The aim is to group traffic 
based on similarity. The cluster with greater similarity 
than a pre-defined threshold will be classed as 
suspicious, thus, the host related to these flow will be 
flagged.
Features Used:

1. Number of bytes per packet for flow
2. Average bits per second for flow
3. Average packets per second per flow
4. Number of packets per flow

Chioi et al proposed a method for detecting bots based
on how different host use DNS services. Bots use DNS
to look up C&C servers and victims. The assumption
by the researchers is that, bots which belong to the same
botnet will use DNS services similarly. This method uses
the X-means clustering algorithm to group domains that
may be related to a botnet.
Features Used:

1. Number of domain tokens
2. Average length of domain tokens
3. Black listed 2nd level domains



4. Number of quires sent
5. Number of distinct sender IPs
6. Number of distinct sender autonomous system num-

bers (ASNs)
7. Query Type
8. Estimated similarity of a domain
9. Number of distinct resolved IPs

10. Number of distinct ASNs of resolved IPs
11. Number of distinct countries of resolved IPs
12. TTL Value in DNS answer

Zhang et al introduced a system for detecting botnets
that identifies P2P botnets

in spite of the botnet being currently engaged in ma-
licious activity. The emphasis of this method is to de-
tect P2P bots by identifying C&C communication pat-
terns that characterize P2P bots. The system first iden-
tifies P2P hosts then P2P bots among those hosts. This
approach uses flow level features, the system presumes
that P2P nodes create many failed outgoing flows. For
each cluster of flows their destination IP is checked and
for each IP their BGP prefix are checked. If the num-
ber of distinct BGP prefixes are smaller than a predefined
amount, they are ignored. To differentiate legitimate P2P
traffic from bot P2P connections, the authors assume that
bots of the same botnet uses similar P2P protocol and
network. Also they assume that pairs connect by two
bots that have longer overlaps than that of legitimate P2P
traffic.

1. Number of packets sent
2. Number of packets received
3. Number of bytes sent
4. Number of bytes received

Gu et al like most, assumes bot exhibit similar pat-
terns in their traffic flows. Using the X-means clustering
algorithm, the authors group flow with similar communi-
cation patterns. This detection approach has five compo-
nents with three levels. The first level has the A and C-
Plain monitors that monitors outgoing and internal traf-
fic flows respectively. The second level is made up of
the A and C-Plain clustering that clusters traffic, filtered
by their respective monitors of the previous level. The
results from these clusters are then passed to the third
level, the cross- plain correlator, which makes the final
decision about hosts that may be a part of a botnet. By
combining the results from the A and C plain clusters.

W.Lu et al proposed a method that clusters flows based
on similarities in payload. This method is split up into
three sections, the first stage analyses feature, the second,
clusters flows and the third, botnet decision. In the first
stage, features are extracted from the flow payload in the
time intervals as a 256-dimentional vector. In the second
stage, flows are clustered using k-means and x-means
clustering algorithm. These clusters are then passed to
the third phase where the cluster with the lowest stan-
dard deviation is marked as botnet.

7. Data Preparation

  The botnet dataset used was provided by the 
Canadian Institute for Cybersecurity [10]. The data 
came in the form of a pcap file the distribution of bots 
in the training set are as seen below.

7.1. Features

  Features were selected for the creation of this 
modle based on the review of the literature, these 
features cap-ture the core of botnet activity from this 
particular per-spective (i.e flow) and therefore model 
botnet activity well. Top level features or characteristic 
were extracted using tshark commands such features 
include:

1. Source IP (ip.src)
2. Destination IP (ip.dst)
3. IP Length (Bytes) (ip.len)
4. TCP Push Flag (tcp.flags.push)
5. Protocol (ws.col.Protocol)
6. TCP Source Port (tcp.srcport)
7. TCP Destination Port (tcp.dstport)
8. UDP Source Port (udp.srcport)
9. UDP Destination Port (udp.dstport)

From these characteristics the following features were
derived:

1. Average byte per packet per flow
2. Variance of bytes per packet per flow
3. Flow Protocol
4. Total number of packets exchanged in flow
5. Total number of bytes exchanged in flow
6. Total number of packets pushed in flow
7. % of packets pushed in flow
8. Source port
9. Destination port

10. Standard deviation of number of bytes per packet in
flow

Feature : Average byte per packet per flow
Assumption : Bots usually act as a group
Category : Group Activity
ML Method : Unsupervised
This particular feature is geared towards modeling such
behavior. Each packet has a particular amount of bytes,
thus knowing the avg byte for each flow one will be able
to group flows with similar this similarity.

Feature : Variance of bytes per packet per flow
Assumption : Bots usually act as a group
Category : Group Activity
ML Method : Unsupervised
This particular feature is geared towards modeling such
behavior. Variance is a measure of how far a set of num-
bers are spread out from their mean. Thus a high vari-
ance will indicate normal activity and not a synchronized



Figure 3. Showing Data Preparation steps

group bot activity but a low variance will indicate the op-
posite.

Feature : Flow Protocol
Assumption : bots use a particular protocol
Category : Individual Activity
ML Method : Supervised
This feature is used to target bots based on communica-
tion protocol, using this feature will improve the accu-
racy of a model if only bots that use a certain protocol is
targeted, otherwise this may disturb the model.

Feature : Total number of packets exchanged in flow
Assumption : Bots usually act as a group
Category : Group Activity
ML Method : Unsupervised
During the attack phase or when bots receive instruction
from the bot master their uniform activities may result
in the number of packets sent in each flow being similar.
The aim of this feature is to capture such behavior.

Feature : Total number of bytes exchanged in flow
Assumption : Bots usually act as a group
Category : Group Activity
ML Method : Unsupervised
similar to the feature above during the attack phase or
when bots receive instruction from the bot master their
uniform activities may result in the number of packets
sent in each flow being similar.

Feature : Total number of packets pushed in flow
Assumption : bots use a particular protocol

Category : Individual Activity
ML Method : Supervised
This feature is specific to the transmission control pro-
tocol TCP. The socket that TCP makes available at the
session level can be written to by the application with
the option of ”pushing” data out immediately, rather than
waiting for additional data to enter the buffer. This is spe-
cific to certain type of bot.

Feature : Percent of packets pushed in flow
Assumption : bots use a particular protocol
Category : Individual Activity
ML Method : Supervised
This is a supporting feature to the one above given a par-
ticular bot that uses TCP push packets. A high percent-
age of pushed packets will indicate a strong possibility
of bot activity.

Feature : Source port
Assumption : bots use a particular protocol
Category : Individual Activity
ML Method : Supervised
Given knowledge of how bots operate, one my know
what ports bots tend to use. With this information this
feature would be quite significant to such a model as seen
by the average drop in accuracy when this feature is re-
moved when using supervised learning.

Feature : Destination port
Assumption : bots use a particular protocol
Category : Individual Activity
ML Method : Supervised



Given knowledge of how bots operate, one my know
what ports bots tend to use. With this information this
feature would be quite significant to such a model as seen
by the average drop in accuracy when this feature is re-
moved when using supervised learning.

Feature : Standard deviation of number of bytes per
packet in flow
Assumption : bots use a particular protocol
Category : Individual Activity
ML Method : Supervised
This is a quantity calculated to indicate the extent of de-
viation for a group as a whole. A low deviation may
signify bot activity.

Features were separated in three different sets as seen
below:

1. Feature Set1 — All features
2. Feature Set2 — Features labeled Group Activity
3. Feature Set3 — Features labeled Individual Activity

Group Activity:

1. Average byte per packet per flow
2. Variance of bytes per packet per flow
3. Total number of packets exchanged in flow
4. Total number of bytes exchanged in flow
5. Standard deviation of number of bytes per packet in

flow

Individual Activity:

1. Flow Protocol
2. Total number of packets pushed in flow
3. % of packets pushed in flow
4. Source port
5. Destination port

1. Neris — IRC — 21159 (12%)
2. Rbot — IRC — 39316 (22%)
3. Virut — HTTP — 1638 (0.94 %)
4. NSIS — P2P — 4336 (2.48%)
5. SMTP Spam — P2P — 11296 (6.48%)
6. Zeus — P2P — 31 (0.01%)
7. Zeus control (C & C) — P2P — 20 (0.01%)

With the pcap file provided (isxBot2014.pcap) the fol-
lowing steps were taken to extract the flows and derive
the necessary flow features. The splitCap program was
used to split the original file into multiple pcap files based
on ip host pairs and stored in a separate folder (capFiles).
Each packet from each host pair was analyzed by a cus-
tom shell script (extract.sh) using tshark commands to
to extract the top level features and then stored in a csv
file. This csv file then served as input for a python script
where flows were extracted, where a flow was defined as
unique source destination ip and source destination ports.
The data was then stored in a MYSQL database.

# ! / b i n / bash
c a p F i l e s = ’ P c a p F o l d e r / ∗ . pcap ’

f i n a l = ’ o u t F o l d e r / Data . csv ’

f i e l d s =’−n −T f i e l d s −E s e p a r a t o r = ,
−e i p . s r c
−e i p . d s t
−e i p . l e n
−e t c p . f l a g s . push
−e ws . c o l . P r o t o c o l
−e t c p . s r c p o r t
−e t c p . d s t p o r t
−e udp . s r c p o r t
−e udp . d s t p o r t ’

command= ’ t s h a r k ’

f o r f i l e i n $ c a p F i l e s
do

echo ” p r o c e s s i n g f i l e : $ f i l e ”
$command −r $ f i l e $ f i e l d s >> $ f i n a l

done

Above is the extract.sh scrip used to pull the top level
features from the pcap files. from these features the
selected features were calculated and used in the final
dataset. For the python code below, First a list of dis-
tinct (source destination ip source destination port) was
obtained. The first loop iterates through the list of flows.
All packets in the file that is a part of the current flow is
then put in another list the second loop iterates through
this list. The flow features are calculated in the sec-
ond loop and that flow is stored as a single instance in
the database. Not all packets were used from the origi-
nal pcap file, in all 500,803 packets were processed and
30,000 flows obtained for the taring set. Class distribu-
tion is shown in fig 4.

# Get L i s t o f a l l f l o w s
# I n i t i a l i z e p l a c e h o l d e r s

# f o r each p a c k e t i n l i s t
f o r row i n c u r :

s o u r c e i p = g e t s r c i p ( row )
d e s t i p = g e t d s t i p ( row )
s r c p o r t = g e t s r c p o r t ( row )
d s t p o r t = g e t d s t p o r t ( row )

# R e s e t p l a c e h o l d e r s

# S e l e c t a l l p a c k e t s t h a t a r e from
t h e c u r r e n t f low



# f o r each p a c k e t i n c u r r e n t f low
f o r row2 i n cu r2 :

# c a l c u l a t e f e a t u r e s
p r o t o = g e t p r o t o c o l ( row2 )
b y t e . append ( g e t i p l e n ( row2 ) )
pushed . append ( g e t t c p p u s h ( row2 ) )
s p o r t = g e t s r c p o r t f l o w ( row2 )
d p o r t = g e t d s t p o r t f l o w ( row2 )
f l o w s r c i p =
s o u r c e i p = g e t s r c i p ( row2 )
f l o w d e s t i p = g e t d s t i p ( row2 )
p a c k c o u n t +=1

a v g b y t e = np . mean ( b y t e )
v a r b y t e = np . v a r ( b y t e )
f l o w p r o t o = p r o t o
p a c k e x c = p a c k c o u n t
b y t e e x c = sum ( b y t e )
p a c k p u s h = sum ( pushed )
f l o w s r c p o r t = s p o r t
f l o w d s t p o r t = d p o r t
s t d b y t e = np . s t d ( b y t e )
c l a s s t y p e =
g e t c l a s s ( f l o w s r c i p ,
f l o w d e s t i p )

i f p a c k c o u n t > 0 :
p e r c e n t p u s h =
( f l o a t ( p a c k p u s h )
/ f l o a t ( p a c k c o u n t ) ) ∗ 100 .00
# c a l c u l a t e p e r c e n t p u s h

# S t o r e c a l c u l a t e d f e a t u r e s i n DB

c u r . c l o s e ( )
conn . c l o s e ( )

Figure 4. Showing Instance distribution in dataset

Table 2: Shows detection accuracy on ML Algorithms
using different feature sets.

ML Method Unsupervised Supervised
ML Algorithm K-Means Naive Bayes

Feature Set1 90% 90.775%
Feature Set2 99% 60.205%
Feature Set3 90% 93.735%

8. Conclusion

   As bots became more threatening, research efforts in 
the area intensified, producing various methods of 
detecting and defending against botnets. To date, ML-
based detec-tion methods have proven to be quite 
effective, though not without their limitations. Timely 
detection, real-time monitoring and adaptability to new 
threats are issues still to be solved. The different ML 
methods have different strengths and weaknesses as 
seen in the role they play in bot detection. The 
statistical foundation of SL meth-ods (i.e. the 
hypothesis representation), concerns its self with the 
relationship between the features (x) and target (y). In 
order to accurately represent the behavior of bots using 
SL, this must be defined by the features selected and 
thus assumes some detailed knowledge about what this 
behavior looks like.

Based on the characteristics of SL researchers in this
field has made use of the precision of SL methods to ac-
curately identify bots based on some known and specific
characteristics (features used in SL). The precision of SL
can be quite effective against bot traffic that seek to cam-
ouflage itself among legitimate traffic, given some spe-
cific characteristics of the malicious traffic. In our survey
of the SL techniques we have observed a common trend.
Apart from specific insights about bot traffic revealed in
the feature space, SL methods perform very poorly. SL
methods may overcome the camouflaged nature of bots.
As seen in Table I, supervised learning methods are em-
ployed for cases where some specific characteristic is
known.

Unsupervised learning methods are mainly used to tar-
get behavioral patterns not unique to any type of bot.
The aim of research that used unsupervised methods is
to capture group activity by bots in a botnet. Unsuper-
vised learning in contrast to supervised learning has as
its main concern, the relationship between samples. For
this reason, it is able to recognize patterns that appears.
Being so concerned with the similarity between samples,
may cause a high rate of false positives as bots try to
camouflage their activities. This issue however has been
dealt with by some researchers [7], by representing spe-
cific characteristics in the features space that shape how
groups are formed.

Supervised learning algorithms are more focused and



the relationship between each feature attribute and the
class from a particular instance. Therefore the more pre-
cise the features are in describing the class the more ac-
curate the predictions. On the other hand given that un-
supervised learning methods do not have class labels,
their focus is on the relation between features them-
selves. Therefore given precise attributes that may repre-
sent a small subset of the dataset may disrupt the group-
ing process and throw off the clusters. However given
the attributes that describes the general behavior of the
dataset (in this case bots) the clusters will thrive. Botnet
detection is a multifaceted problem with multiple ways
of detection at different stages of the botnet life-cycle.
Understanding what tools to use at the appropriate time
with the right set of features are the key to developing
robust detection systems. Given the multi-perspective
nature of bots our future work will be to use the multi-
view based machine learning ensemble method Multi-
perspective machine learning (MPML) [25] to develop
an accurate and robust botnet detection system.
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