
Cost to Serve of Large Scale Online Systems

Andrés Paz Sampedro, Shantanu Srivastava

Microsoft Corporation

Redmond, USA

Abstract

Online systems typically provide a variety of

different service offerings. For example, an internet

search engine provides the service of searching web

pages, videos, images, news, maps etc. Each offering

can utilize different physical and/or virtual systems,

networks, data centers, and so forth. Thus, a request

to search videos may use some, but not all, of the

resources used by a request to search images. Also,

each video query will not use the same number of

resources due to caching and ranking algorithms. Due

to this it can become extremely difficult to ascertain the

Cost to Serve (CTS) of an offering. CTS is required to

understand cost of the product offerings for request per

second (RPS), create rate card for partner deals,

target efficiency areas and decide ROI of services. In

this paper, we define the CTS methodology for Bing. In

this methodology, CTS is calculated by determining

operational RPS of each platform in Bing and the

average number of times a type of request touches

those platforms. Prior to this work, CTS was

calculated by manually tagging capacity used by each

offering and number of observed queries. The

methodology described here can be applied to any

other large scale online distributed system.

1. Introduction

Bing is a global online search engine. It is available

worldwide in many languages and localized for many

countries. It is currently the second most popular search

engine with 21.4% market share in US for desktop

searches [1]. The infrastructure that supports Bing is

large and diverse, both in terms of the type of resources

used and in geographic locations. It has a very complex

architecture which includes serving platforms that

directly serve end user queries and non-serving

platforms that generates or processes data to enrich or

improve query results. Additionally, there is research

and development (R&D) platforms which are not

involved in live traffic e.g. engineering systems used to

develop, build, deploy and test.

With such a complex architecture, it is challenging

to report how much it costs to generate the response for

a user request. Not only that, but there are different

categories of requests, which depending on a variety of

factors like the source of the query (end-users, 3
rd

parties, automated bots), the location, or the type of

information requested (web, news, images, etc) will

have different costs.

When available, the Cost to Serve (CTS) of a

request can be an important tool used in many ways, for

example, platform owners can use it to compare

efficiencies and setup goals; business development and

marketing teams can use a regional CTS to determine

how much to charge for partner deals; the leadership

team can use it to analyze the cost of a product offering

and determine its ROI.

To define a methodology to calculate CTS we

looked at the airline model [2] where capacity is

calculated per number of seats available be it filled or

empty. We replicated this model by looking at total

available capacity in the system rather than the current

load of requests. In its simplest form, CTS can be

calculated by:

For example, the CTS of a simple application

comprised of a single service that serves only one type

of request can be calculated simply by collecting all the

infrastructure costs of the service, and divide it by the

number of requests it can handle.

More broadly, if an application is comprised of

multiple services, we can calculate the CTS of each

individual service and report the CTS of a request as the

sum of the CTS of the services it used.

In our case, Bing is comprised of hundreds of

services (we call these platforms) and hundreds of

product offerings which trigger millions of requests per

day. Not only that, but we want to be able to report the

CTS across multiple dimensions like region, device,

Journal of Internet Technology and Secured Transactions (JITST), Volume 5, Issue 1, March 2016

Copyright © 2016, Infonomics Society 460

partner, etc., so we had to find mechanisms to

automatically detect the cost and volume of Bing’s

platforms; identify what platforms a given request uses

and classify the incoming requests into their

corresponding product offering and dimensions.

2. Cost: Bing Cloud Catalog

Our first step was to have a single and accurate

inventory of Bing’s resources and cost associated with

them. We called this the Bing Cloud Catalog (BCC)

Each resource type is managed by a different

management system which is capable to report how

many resources each platform owns; we wrote tools to

capture the inventory from each of these systems and

collect it into a single repository. The tools also took

care of normalizing the platform names across the

management systems so we could have a unified

reporting.

Based on different heuristics, like the name and

number of resources, their utilization patterns, and other

signals from the management systems, a machine

learning system is able to categorize the resources into

different dimensions like usage (serving, non-serving or

R&D) and variable capacity % (i.e. how much capacity

will scale with traffic). Teams verify the categorization

given by the system, which is then fed back to improve

future categorizations.

Finally, we worked with the finance team to come

up with actual cost of different resources per region by

distributing cost of capacity and including warranty,

hosting and lease cost.

After completing BCC, we were ready to start

working on calculating the platform’s volume.

2.1. Volume: Operational Requests Per Second

Determining the volume per platform or the

denominator of the CTS equation is critical. We are

interested in finding the number of requests per second

that a platform can handle under normal operations.

We call this the Operational RPS, or ORPS.

In the past, each team had to run capacity tests that

would stress their serving platform (i.e. a platform that

serves request from users) to the breaking point to

identify the max RPS it could handle. Setting up and

maintaining these tests is typically hard and expensive

and it would not scale for us. Instead, we calculate the

breaking point of a platform simply by defining its

Service Level Agreements (SLA) and using the load,

latency and utilization counters from its production

servers.

As part of the service definition, each platform has a

well-defined SLA on what’s the maximum amount of

time a response to a request must take. Typically, this

is enforced via timeouts on the client.

We created a utilization reporting pipeline where we

captured load, latency and utilization data and group it

by service. In this context, the load is typically

measured in the number of requests being serviced in a

given period of time, such as RPS. Latency is the

difference between the time when the request is

received and when the request is fulfilled. Utilization

is a measure of how busy the system is, such as CPU

utilization, utilization of other system resources such as

I/O, RAM, storage, and/or so forth.

We found that it is very common to have a direct

correlation between load and utilization: the more

requests a single server gets the more resource it will

utilize. Similarly, there is typically a direct correlation

between latency and utilization: the more resources a

server utilizes the more time a request takes to

complete. This is shown in Figure 1.

Figure 1. Load and latency vs utilization

Even more, because all servers of the same service

and on the same datacenter have the same SKU (i.e.

physical characteristics), and because we randomly and

evenly distribute the load across all the server of the

same service, the value of these correlations are the

same across all servers of the same service in the same

datacenter.

Using these correlations, we can calculate the load

a single server can handle such that both are true:

a. latency is below or equal the platform’s

service level agreement (SLA)

b. the utilization is below a specific max

utilization target (e.g. 90%)

Specifically, using the correlation between latency

and utilization, we can predict the server’s utilization

level that would break the latency SLA. We either take

this value or the max utilization target to now predict,

Journal of Internet Technology and Secured Transactions (JITST), Volume 5, Issue 1, March 2016

Copyright © 2016, Infonomics Society 461

using the correlation between load and utilization, the

corresponding load for this utilization level.

This value predicts the load at which a server will

start breaking its latency SLA. We call this the server’s

MaxRPS.

For example, assuming the server in Figure 1 has a

latency SLA of 300ms and a 90% max utilization

target, we can predict using a linear approximation of

its load vs utilization graph, that it will reach its latency

SLA of 300ms at 76% utilization level; at this

utilization level, and again using a linear

approximation of utilization vs load, we can predict a

load of 55 RPS. Therefore, the server’s MaxRPS = 55.

Once the max load that a server of a given service

can handle (MaxRPS) is known, and because most of

our services can scale linearly simply by adding more

machines, we define the Ceiling RPS or CRPS of a

platform as:

Equation 2: Platform’s CRPS

CRPS represents the max RPS a platform can

handle on a datacenter without breaking its SLA.

In Bing, all our platforms need to leave enough

buffer to be able to handle traffic in case of other

datacenter outages. This buffer is represented as the

Business Continuity Plan RPS (BCPRPS). The

BCPRPS is different per platform and per datacenter,

and it’s based on the peak traffic observed by the

platform across the different datacenters it is deployed

in the last 90 days.

For CTS we want to use the volume of requests that

is available for end users, therefore we used the ORPS

which is calculated by:

Equation 3: Platform’s ORPS

2.2. Volume of Non-Serving Platforms

In Bing, we use a lot of resources on non-serving

platforms, for example building an index of all content

on the internet or processing logs to improve our

algorithms, therefore we also wanted to calculate the

CTS for non-serving platforms such that we could

include them in the calculation of a Product Offering

CTS. For non-serving platforms, though, we can’t

define an ORPS as by definition they serve no traffic.

For non-serving platforms we decided to use

observed Peak RPS in the last 90 days as their CTS’

volume, as this is the volume of queries any non-

serving platform eventually need to handle.

2.3. Cost Per Request

Once we have all platforms’ CTS, we calculate the

cost of a single request as the sum of the cost of the

serving platforms by the number of times the platform

was used:

Equation 4: CTS of individual request

Where:

 R is the CTS for a request;

 Mi is the number of times the i
th

 platform

was used in filling the request;

 CTSi is the CTS for the i
th

 platform

 N is the number of platforms.

For non-serving platforms, we used 1 as the

number of times the platform was used for all requests.

For serving platforms, we leveraged Bing’s server logs

to calculate how many times a serving platform was

hit. More broadly, using Bing server logs for each

request we can identify:

 Resources used and/or accessed by the request

(i.e., which servers);

 The product offering associated with the

request (i.e., the page name for the offering);

 Information about the entity that sent the

request such as any combination of: an

identifier associated with the requesting

entity; the region where the request

originated; the language of the request (i.e.,

English, Chinese, etc.); other entity

information; and

 Other information that can be used to break

down the backend resource cost calculation

such as which data center the request was

routed to, etc.

Using BCC, it was simple to map individual servers

to a platform, this combined with a platform’s CTS

allowed us to calculate the cost of an individual

request.

Journal of Internet Technology and Secured Transactions (JITST), Volume 5, Issue 1, March 2016

Copyright © 2016, Infonomics Society 462

2.4. Product Offerings CTS

Bing is the brand for our facing consumer product,

but internally it has many product offerings which can

be used or syndicated individually.

As explained, Bing’s server logs already

categorized queries based on the product offering and

other dimensions. We define a product-offering CTS as

the average of the CTS of all the queries for that

product offering:

Equation 5: CTS of a Product Offering

Similarly, if we want to compute the CTS across

other dimensions like region, devices, partners, we

calculate its CTS as the average of the queries’ CTS

that are part of such dimension.

2.5. Statistical Sampling

Bing processes billions of requests per day. It is

neither practical nor cost effective for us to calculate

the cost of each one of them. Instead, throughout the

day we are constantly collecting a random sample of

requests and use statistical methods to calculate the

actual cost of the entire population.

3. Conclusion

CTS can be a powerful metric used to drive

efficiencies and business priorities. Calculating it at

scale on a large online application can be challenging

considering the amount of services and data. We

believe the biggest breakthroughs of our methodology

are to calculate CTS not based on peak traffic, but on

ORPS, which makes it more reliable and consistent,

and to calculate ORPS based on server logs and

counters from normal production traffic without the

need of running capacity tests for each platform.

4. Acknowledgment

The overall success of this project wouldn’t have

been possible without the help and feedback of many at

Microsoft, including Etta Mends, Atin Kothari, Andre

Briggs, Bob Wyler, Kyle Peltonen, Ramu Movva,

Mark Aggar, Alisson Sol and Maria Alvarez.

5. References

[1] comScore, “comScore Releases February 2016 U.S.

Desktop Search Engine Rankings”. [Online]. Available:

https://www.comscore.com/Insights/Rankings/comScore-

Releases-February-2016-US-Desktop SearchEngine-

Rankings [Accessed: 01-Jun-2016].

[2] Wikipedia, “Available seat miles”. [Online]. Available:

https://en.wikipedia.org/wiki/Available_seat_miles

[Accessed: 10-Dec-2015].

Journal of Internet Technology and Secured Transactions (JITST), Volume 5, Issue 1, March 2016

Copyright © 2016, Infonomics Society 463

