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Abstract 

The problem of network intrusion detection is one 
that is ever-changing, ever-evolving, and is always in 
need of improvement. Since the method of attack is 
constantly changing, intrusion detection systems 
must also be constantly improved in order to 
compensate for the threat of new attacks.  This paper 
is written to outline the improvements made upon the 
original paper published by Wilson et al. in which a 
self-organizing feature map-based intrusion 
detection system was trained using the 1999 KDD 
Cup competition training dataset and was used to 
successfully classify 63% of all user-to-root attacks 
within the 1999 KDD Cup competition testing 
dataset. This result shows an improvement of over 
five times the number of successfully detected user-
to-root attacks by the winner of the 1999 KDD Cup 
competition, submitted by Bernard Pfahringer. 

1. Introduction

Intrusion detection systems play a pivotal role in
preventing malicious attacks on the integrity, 
security, and reliability of a computer network. The 
problem of successful network intrusion detection is 
a complex one. There are frequent network 
intrusions and they can have crippling consequences. 
They are often centered on politics, with one side 
targeting opposition systems in an attempt to disrupt 
proceedings. Such an occurrence took place in 
Russia in 2009, where several government 
opposition websites were deliberately targeted by 
Denial of Service (DoS) and Distributed Denial of 
Service (DDoS) attacks [5]. Network attacks do not 
only take place in hostile environments like Eastern 
Europe, but also in North America. In 2008, CNN 
was victimized by, not one but, two DDoS attacks in 
quick succession [6]. As well, in 2008, the internet's 
Top Level Domain (TLD) systems were 
systematically attacked by a DDoS, resulting in the 
crashing of the entire internet for several hours. 
These attacks are eventually thwarted, with the 
quantifiable cost of financial loss, as well as the 

immeasurable cost resulting from system downtime. 
With attacks changing weekly, it is imperative for 
detection systems to become more generalized to 
accommodate for the ever-changing parameters of 
what constitutes an attack. The need for such a 
system sparked the topic of the 1999 Knowledge 
Discovery and Data Mining (KDD) Cup competition. 

The original paper published by Wilson et al. [1] 
analyzed the results from the KDD Cup competition, 
discovering that each system used a supervised 
learning algorithm. These systems produced mixed 
results for User-to-Root and Remote-to-Local 
attacks. They sought to eliminate the programmer's 
"understanding" of the problem, and allow the 
system to learn without the encumbrance of a 
programmer's self-conceived notions of how the 
system should learn. 

Self-Organizing Feature Maps (SOFM) were 
used, with the aim of allowing the system to analyze 
the raw data without human interference to create a 
solution set which would separate the data into the 
various intrusion types. Those intrusion types are 
Denial of Service, Probing, User-to-Root, and 
Remote-to-Local. 

The research conducted by Wilson et al. [1] 
showed solid results for successfully detecting 
intrusions for all but one attack category.  Their 
system showed detection rates of 93%, 66%, 63%, 
0% and 96% for denial-of-service, probe, user-to-
root, remote-to-local attacks, and normal traffic 
respectively. 

The glaring issue with these results was the 
absence of successful detection for remote-to-local 
attacks.  This paper aimed to resolve this disparity by 
implementing two enhancements upon the initial 
method.  First, in the training phase of the 
methodology the dimension of data, used to 
categorize similar data and ultimately determine 
successful intrusion detection, was reduced. 
Secondly, in the post-processing phase of the 
methodology, a biased pruning algorithm was 
implemented in order to increase the percentage of 
successful intrusion detection within remote-to-local 
attacks.  Each of these approaches will be explained, 
in conjunction with those found in [1], in Chapter 3. 
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2. Literature Review 
 

In this chapter, an overview of network intrusion 
detection and the 1999 KDD Cup competition will 
be provided. As well, the functionality of a self-
organizing feature map will be explained in detail. 

Network intrusion detection is the process of 
detecting network traffic in order to passively, or 
actively, prevent an attack on a system. Detection is 
performed in one of two ways: anomaly detection 
and misuse detection. 
 
2.1. Anomaly Detection 
 

Anomaly detection works by establishing a 
baseline for normal network behaviour. A system 
trained for anomaly detection analyzes known 
"normal" network behaviour to establish this 
baseline and, after successful training, is used to 
detect any network behaviour outside of the 
established baseline. This method is quite successful 
in detecting any type of "non-normal" behaviour, but 
has trouble defining specific intrusion types, and has 
a very high false-positive rate. The high false-
positive rate is due to the system’s lack of experience 
with the overall set of normal network behaviour. In 
essence, the system flags any unknown traffic as an 
intrusion. 
 
2.2. Misuse Detection 
 

Misuse detection works on the opposite principle 
to anomaly detection. Misuse detection works by 
analyzing known network intrusion patterns to 
establish a signature for such an intrusion to be used 
in analyzing future network traffic. This has the 
advantage of having a very low false-positive rate 
compared to anomaly detection, but has the 
limitation of not being able to detect new intrusions 
very well. Since network intrusions change rapidly to 
counteract existing systems, misuse detection 
systems fall short when detecting these new attacks 
and are, traditionally, not ideal. As mentioned earlier, 
the winner of the 1999 KDD Cup competition 
detected 13% and 8% of U2R and R2L attacks 
respectively [2, 9], within the testing dataset used. 
 
2.3. 1999 KDD Cup competition 
 

The 1999 Knowledge Discovery and Data mining 
(KDD) Cup competition was designed to tackle the 
issue of ever-changing network intrusions. This 
competition is an annual event organized by the 
Association for Computing Machinery (ACM) 
Special Interest Group on Knowledge Discovery and 
Data Mining, the self-proclaimed leading 
professional organization of data miners [7]. The 

task of the 1999 competition was to ”build a network 
intrusion detector, a predictive model capable of 
distinguishing between ’bad’ connections, called 
intrusions or attacks, and ’good’ normal 
connections” [8].  

This task was undertaken by various groups from 
around the world, each providing a unique 
perspective on the problem, as well as different 
systems for solving it. The general results were 
promising, but with an obvious shortfall with the 
detection rates for user-to-root (U2R) and remote-to 
local (R2L) network intrusions. The winning system 
posted correct detection rates of 13% and 8% for 
U2R and R2L attacks respectively [2, 9]. This 
seemed puzzling as a successful system should be 
able to successfully detect roughly the same 
percentage of attacks throughout each type. Further 
analysis revealed a possible explanation that 
suggested that the dataset itself was flawed, and that 
the training and testing datasets showed a dissimilar 
target hypothesis; implying that one could not be 
trained to test for the other [10].  

The KDD dataset is a set of data consisting of two 
parts, training data and testing data. The training data 
is a set consisting of approximately five million rows 
of data, with the testing set consisting of 
approximately five hundred thousand rows. These 
rows are captured data packets, converted into 
numerical values. Each row in the dataset consists of 
4 initial classifiers, 37 float values, as well as a type 
value. The type value is used to label the row to 
illustrate if the data is of normal type, or if it is an 
intrusion type. 
 
2.4. The Self-Organizing Feature Map 
 

Self-organizing feature maps (SOFMs) [11, 12, 
13] are the brainchild of Finnish academic Dr. Teuvo 
Kohonen. Dr. Kohonen is a prominent researcher and 
is currently a professor emeritus of the Academy of 
Finland. Kohonen has made tremendous 
contributions to the field of artificial intelligence; his 
most notable being that of the SOFM, or Kohonen 
Map, named in his honor. 

Before this paper delves into the inner workings 
of a SOFM, the general concept must first be 
explained. As mentioned earlier, a SOFM is an 
unsupervised learning technique. This approach 
differs from a traditional artificial neural network –
from which SOFMs are derived– as an artificial 
neural network is supervised. Supervised learning 
implies that the network being trained is trained in a 
particular direction, and the success of the network is 
determined by how well it learns in that direction. 
SOFMs differ in this respect as they are not given a 
formal direction in which to learn. Instead, a SOFM 
is presented with a set of data and determines on its 
own how best to learn that data. This technique has 
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both its advantages and drawbacks, which will be 
discussed in the following sections. 

Due to the unsupervised learning of the SOFM, 
they are generally better suited towards classification 
problems rather than forecasting problems, to which 
artificial neural networks are vastly superior. In 
general, considering SOFMs as a clustering 
methodology goes a long way towards understanding 
how they function. 

It is with the realization that SOFMs are best 
suited for classification that their design is based. 
SOFMs are implemented as, usually, a two 
dimensional grid, or map, of nodes, each with its 
own candidate vector of data. As one can see in 
Figure 1, the map of nodes is arranged as a grid. 
 

 
 

Figure 1. A SOFM as a Grid 
 

When creating a SOFM, the first consideration 
one must make is how large a map is required. This 
consideration is generally dependent on the number 
of different classifications, or groups, that are 
necessary. For instance, if there were only two 
possible groupings, then having a map of 3000 nodes 
is not logical. Contrastingly, if there are many 
possible groupings, a sufficiently large map will be 
required. The size of a map for any given problem 
can be determined empirically, through several 
intelligent estimations and simulations. 

Secondly, a time interval is required which tells 
the system when to stop training. Much like that of 
the upper bound in a feed-forward network, this 
interval, represented as (λ), imposes a hard stop to 
training. This bound is checked after each row during 
the SOFM’s training. 

Thirdly, knowing the dimensionality of the data is 
required. The SOFM must know how to reduce the 
dimensionality of the data in order to represent it in 
the two dimensional map. In order to achieve this, 
knowing the dimensionality of the input vector is a 
must. Again, this value is different for each problem, 
and is easily deciphered. 

Fourthly, and this is the most vital piece of 
information in the initial setup, a neighbourhood 
function must be selected. Neighbourhood functions 
allow the training of the surrounding, or neighbour, 
nodes of the map. The neighbourhood function is 

represented as (θ(t)) A good example of a commonly 
used neighbourhood function is that of the Gaussian 
curve. The selection of this curve as a neighbourhood 
function implies that the designer of the system 
wants a few of the winner’s neighbours to be trained 
along with the winner, and then have the influence of 
the training gradually reduce as the distance from the 
winner increases. Modifying this neighbourhood 
function can change the learning of the map. For 
instance, if the peak of the curve has its width 
increased, it suggests that the designer would like a 
larger radius around the winning node to be trained 
more intensely than a by narrow peak. The candidate 
node is treated as being at the peak of the curve. 

Figure 2 illustrates the gradual descent of learning 
on nodes around the winning, or candidate, node. It 
can be observed that the learning around the 
candidate node is circular. That implies that a 
distance is calculated from the candidate node 360 
degrees around it, to encompass every neighbour 
node within the distance threshold. Figure 1.2 also 
shows that as the distance increases, the effect of the 
learning algorithm decreases (denoted by the ever-
thinner circles). This effect is known as gradient 
descent and is important because one would hope 
that only the closest nodes to the candidate node are 
trained as effectively as possible. 
 
 

 
 

Figure 2. Example of Gradient Descent 
 

As stated earlier, once the initial values have been 
determined, it is time to go ahead and train the map. 
The learning algorithm for a SOFM has five steps. 
Each will be described in detail. The variables 
required are as follows: 

 
t  
λ 
Wv 
D 
θ(t) 
α(t) 

= 
= 
= 
= 
= 
= 

Current Iteration 
Iteration Limiter 
Current Weight Vector 
Target Input 
Neighbourhood Function 
Learning Restraint 
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It has been shown in the previous subsection that 
the variables (λ, θ(t)) have been initialized in the 
initial setup. The remaining variables will now be 
explained. 
 
t - Current Iteration 

The variable (t) is the counter of the current 
iteration through the SOFM’s training. This 
variable is consecutively incremented until it is 
greater than (λ). 

 
Wv - Current Weight Vector 

The variable (Wv) is the vector value stored in a 
node that is used to find similarity between itself 
and the input vector. These values are all set 
randomly at startup, and are modified during 
training. Because these values are initially 
random, they do not represent any training data. 
This is an important fact because it means that 
the map does not compare input vectors to other 
training data. 

 
D - Target Input 

The variable (D) is the target input and is the 
input vector for any iteration (t). On each 
iteration, an input vector (D) is selected from the 
training data and is calculated against the 
winning node in order to train the map.  

 
α(t) - Learning Restraint 

The variable (α(t)) is the learning restraint of the 
SOFM. The learning restraint is responsible for 
restricting the learning of the map as time 
increases. This is implemented so that the map 
learns much slower, and more gradually, near 
the end of training, as to allow the map to 
converge towards a solution set. 

 
The SOFM learning algorithm follows five steps. 
These steps are as follows: 
 

1. Randomize the map's nodes' weight vectors 
2. Grab an input vector 
3. Traverse each node in the map 

i. Use Euclidean distance formula to 
calculate the similarity between the input 
vector and the map's node's weight vector  

ii. Track the node that produces the smallest 
distance (this node is the winner) 

4. Update the nodes in the neighbourhood of 
winner by pulling them closer to the input 
vector  
Wv(t + 1) = Wv(t) + Θ(t)α(t)(D(t) - Wv(t)) 

5. Increment t and repeat while t <  λ 
 
Next, this paper will look at the methodology that 
was undertaken. 

 

3. Methodology 
 
This chapter will explain the reasoning behind the 
approach undertaken in this paper, as well as 
adjustments that had to be made in order to integrate 
the dataset into the SOFM. 
 
3.1. Preprocessing 
 

After analyzing the dataset, and because of the 
unbiased nature of the SOFM neighbourhood 
comparison algorithm, it was realized that some 
preprocessing of the dataset is required before the 
algorithm may properly read it. As opposed to other 
machine learning techniques that employ biases in 
order to balance the influence of certain columns of 
data, the SOFM comparison algorithm uses a 
Euclidean distance calculation which does not have 
that luxury. Instead, because every column of data is 
treated with equal significance, the data in the dataset 
must be normalized in order to make each piece of 
data relative to each other piece.  

In order to normalize the data, the dataset is 
loaded into memory, which each value being 
transformed by the following formula: 

 












)1log(max

ueInitialVal
ValueNormalized  

 
The max value differs dependent on which 

normalization type is used, local or global. When 
using local normalization, max is the maximum 
value of the column of data in which InitialValue is 
found. When using global localization, max is the 
maximum value of the entire dataset. 
 
3.2. Training the SOFM 
 
 

Training the SOFM conducted by [1] is rather 
straight forward. The data from the training dataset is 
read row by row, compared against the existing map 
to determine the most similar node, the 
neighbourhood is adjusted accordingly, and the 
system moves to the next row. This entire process is 
documented in Chapter two, and it is this exact 
process that is followed for the map training in this 
research. After the map has been sufficiently 
exposed to the training dataset, it is time to begin 
classification.  

In order to reduce the complexity of the 
comparison algorithm after the map has been trained, 
the training dataset was once again compared against 
the map. The data was compared using the same 
Euclidean distance formula as prior but instead of 
training the map further, a matrix was used to keep 
track of the number of times a particular node on the 
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map was selected as the candidate node. This allows 
for the data to be laid out on a two dimensional grid. 

For this paper, the training of the map was 
conducted in a similar manner as [1], but with the 
difference being the reduction of the dimensionality 
of data.  Whereas their map trained the SOFM using 
the 37 dimensions of data within the training dataset, 
the work conducted in this paper reduced the 
dimension to 26, a reduction of 11 columns, or 30%.  
This was done to hopefully accomplish two things.  
First, the reduction of data would decrease the map 
training time, as well as the testing time afterwards.  
Secondly, and most importantly, the reduction would 
hopefully increase the percentage of successful 
attack detection by relieving the Euclidean distance 
similarity calculator of the useless data that this 
author hoped had caused detection issues for the 
remote-to-local attacks. 

The idea for reducing the dimension of data came 
from [3], where Baig et al. had chosen the fifteen 
most influential features of data to train an AODE-
based intrusion detection system, with promising 
results.   

 
Figure 3. Results From Kayacik’s  
Feature Relevance Analysis [4] 

 
As for choosing which features to remove, an 

analysis from Dalhousie University provided the 
solution.  Kayacik et al. [4] conducted a feature 
relevance analysis on the 1999 KDD Cup training 
dataset to determine which features were most 
important to correctly classify the data.  Their 
analysis yielded the results shown in Figure 3. 

Figure 3 shows there are several features that 
offer very little information to the overall solving of 
the intrusion problem, and even more that offer no 
information at all.  It is with these results that this 
paper eliminated those features.  For this paper, the 
features were removed: 7, 9, 11, 14, 15, 16, 17, 18, 
19, 20, and 21.  These values represent the features 
of the dataset which provide the least amount of 
information to the task of differentiating attacks from 
normal data.  It is important to note that both [1], and 
the work conducted in this paper, did not use features 
1-4.  After analyzing the results from [4], future 

work should include possibly incorporating features 
1-4, and especially features 2 and 3, as they yield the 
5th and 6th most important information gain of the 
entire dataset.  This inclusion will be discussed in the 
Future Work section of this paper. 

 
3.3. Refinement 
 

This section will explain the steps taken after the 
initial training of the SOFM in order to reduce the 
complexity of the analysis of the results, as well as to 
reduce the false positive count for each attack type. 

After the matrices had tabulated the sums of hits 
on each particular node, a separate matrix for each 
attack type (DoS, Probe, U2R, R2L, Normal), a 
vector was created with the Cartesian points of each 
“hotspot” –the spot in the matrix where the number 
of hits was not 0– to further reduce the complexity of 
the comparison for test data against the trained map. 
These vectors dramatically reduced the number of 
nodes checked in order to find the candidate node. In 
the research conducted, the size of the map was 
100x100. This creates 10000 cells that need to be 
checked each iteration of the algorithm in order to 
find the candidate node. By creating the vectors of 
hotspots, the number of nodes that are required to be 
checked is decreased 100-fold. Table 1 shows the 
size of each of the vectors for each attack type, using 
the 10% training set, as well as for local and global 
normalization. Table 1 also shows that by using 
global normalization, the number of hotspots 
decreases, meaning that the map was trained tighter. 

After analyzing the results with the hotspot 
vectors and global normalization, it was discovered 
that the false positive rate was somewhat high. After 
some consideration and analysis, it was noticed that 
some of the vectors overlapped on the map, causing 
a hit on more than one vector, and skewing the 
results. To improve upon this, a pruning algorithm 
was implemented. 

 
Table 1. Length of Hotspot Vectors [1] 
 

  
Local 
Normalization 
 

 
Global 
Normalization 
 

 
10%  
Training Set 

DOS Size:  59  
Probe Size:69  
U2R Size:  11  
R2L Size:  30 

DOS Size:  32 
Probe Size:34 
U2R Size:  9 
R2L Size:  22

 
The algorithm used for pruning the vectors was 

simple, yet extremely effective. The algorithm used 
compared each vector against each other vector, and 
if any overlapping nodes were found, then the node 
with the least positive influence on its respective 
category was eliminated from the respective vector. 
For instance, if an overlapping node was found in the 
Probing vector and the Denial of Service vector, a 
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comparison was done between those two types. If the 
node in question only provided 1 positive hit in 
training out of 1000 for the Probing category, and 
that same node provided 50 positive hits in training 
out of 1000 for the Denial of Service category, then 
the node would be eliminated from the Probing 
vector and would remain in the Denial of Service 
vector. Table 2 illustrates the reduction in the 
number of hotspots due to the vector pruning 
algorithm. The desire to implement such an 
algorithm it is quite evident. 

 
Table 2. Hotspot Vectors with Vector 

Pruning [1] 
 

  
Local 
Normalization 
 

 
Global 
Normalization 
 

 
Without Pruning 

DOS Size:  59  
Probe Size:69  
U2R Size:  11  
R2L Size:  30 

DOS Size:  32 
Probe Size:34 
U2R Size:  9 
R2L Size:  22

 
With Pruning 
 
 

DoS Size:  39 
Probe Size:58 
U2R Size:  11 
R2L Size:  22 

DoS Size:  17 
Probe Size:27 
U2R Size:  8 
R2L Size:  7 

 
 

Figure 4 shows the results published by Wilson et 
al. [1].  Figure 4 displays the successful classification 
of three of the four attacks types, as well as a high 
percentage of correct normal data classification.  
What Figure 4 also shows is the lack of correct 
detection of the remote-to-local attack type.  This 
flaw was the basis for the biased pruning algorithm 
implemented in this paper.   

 

 
Figure 4. Detection Rates With Vector 

Pruning [1] 
 
Wilson’s pruning algorithm removed the weaker 

of the two conflicting hotspots, regardless of type.  
The pruning algorithm implemented in this work 
biased the pruning algorithm towards maintaining 
hotspots for attack types, regardless of the negative 
impact for other types; notably normal data 
detection.  A simulation was conducted with a bias 
on the R2L vector when compared to the normal 
vector.  As Figure 4 shows, most of the false positive 
results for the R2L attack type were found in the 
normal data so this is, naturally, where a bias would 

be most useful.  Figure 6, found in the next chapter, 
displays the results of this simulation.   
 
4. Results 
 

After refining the method undertaken by [1], and 
conducting simulations to attempt to improve their 
results, this paper has found the following.  

Figure 5 shows the results of the reduced-feature 
SOFM training and testing.  The results from Figure 
5 show a reduction in detection rate for denial of 
service, user-to-root, and normal data, but an 
increase in the detection rate of probe attacks by 
11%.  These results show that removing the least 
important features does not have the overall effect of 
increasing detection rate, as was initially thought.  
Instead, the elimination of these features only 
improved the probe attack detection rate.  The 
remote-to-local attack rate remained at 0%, which 
reinforces the need for a biased pruning algorithm. 
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Figure 5. Results From Feature Reduced 
SOFM Training 

 
Figure 6 shows the results of the R2L-biased 

pruning algorithm.   
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Figure 6. Results From R2L-Biased 
Vector Pruning Simulation 
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These results show that implementing a biased 
pruning algorithm on a full-feature set-trained SOFM 
yields a 12% improvement for R2L attacks, but this 
advancement brings with it a drawback of 41% 
positive detection for normal data. Figure 6 shows 
only a 55% positive detection rate for normal data. 
Figure 6 shows one other key piece of information. 
It shows that the SOFM is unable to completely 
separate R2L data from normal data.  By biasing the 
pruning algorithm into forcing successful R2L 
detections, the algorithm eliminates normal attack 
detectors that exist on the same SOFM node, causing 
the high false positive rate.  

One last result of note is the overall detection rate. 
Reducing the number of features used to train and 
test the system caused the overall detection rate to 
rise 0.27%, from 99.45% to 99.72%.  Although this 
may seem like a marginal amount, it equates to a 
detection increase of 1104 new rows of data from the 
testing dataset not previously detected by [1]. 

5. Conclusions

After conducting research into improving the 
original work by Wilson et al. [1], this author has 
concluded that the biasing of the pruning algorithm 
has more of a detrimental effect than a positive one. 
The reduction of features from the dataset yielded a 
slight increase in probe detection rates, but also 
yielded a slight reduction for denial-of-service, user-
to-root, and normal data.  This author feels that more 
work into feature selection is needed before an 
ultimate conclusion can be drawn on this matter. 
Most important is the inclusion of features 1-4, as a 
discretized value, which may yield more positive 
results in the future. 

6. Future Work

Future work in this area of research is abundant. 
There are a few key areas that are of particular 
interest to this author. 

First, this author would like to complete a feature 
relevance analysis for the testing dataset to see which 
features align, and which differ, from the training 
dataset as shown in the feature analysis above.  The 
lack of improved results by reducing features implies 
that the training and testing datasets should have 
different feature relevance graphs. 

Second, creating a vote-based system of SOFMs 
is of particular interest.  This author feels that a more 
specific system, accomplished by separating the data 
amongst different maps, would help to separate the 
R2L data from the normal data, and would 
dramatically increase results. 

Third, this author would be interested in testing 
this system against another dataset.  The KDD Cup 
dataset, used in this and other work, is in known for 
being particularly difficult to work with.  Since this 

system has provided very impressive results relative 
to other systems, it would be interesting to see how it 
fares with other datasets. 
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