
Improvements on Self-Organizing Feature Maps for User-to-Root and
Remote-to-Local Network Intrusion Detection on the 1999 KDD Cup Dataset

Ryan Wilson, Charlie Obimbo
School of Computer Science

University of Guelph
Guelph, Ontario, Canada

Abstract

The problem of network intrusion detection is one
that is ever-changing, ever-evolving, and is always in
need of improvement. Since the method of attack is
constantly changing, intrusion detection systems
must also be constantly improved in order to
compensate for the threat of new attacks. This paper
is written to outline the improvements made upon the
original paper published by Wilson et al. in which a
self-organizing feature map-based intrusion
detection system was trained using the 1999 KDD
Cup competition training dataset and was used to
successfully classify 63% of all user-to-root attacks
within the 1999 KDD Cup competition testing
dataset. This result shows an improvement of over
five times the number of successfully detected user-
to-root attacks by the winner of the 1999 KDD Cup
competition, submitted by Bernard Pfahringer.

1. Introduction

Intrusion detection systems play a pivotal role in
preventing malicious attacks on the integrity,
security, and reliability of a computer network. The
problem of successful network intrusion detection is
a complex one. There are frequent network
intrusions and they can have crippling consequences.
They are often centered on politics, with one side
targeting opposition systems in an attempt to disrupt
proceedings. Such an occurrence took place in
Russia in 2009, where several government
opposition websites were deliberately targeted by
Denial of Service (DoS) and Distributed Denial of
Service (DDoS) attacks [5]. Network attacks do not
only take place in hostile environments like Eastern
Europe, but also in North America. In 2008, CNN
was victimized by, not one but, two DDoS attacks in
quick succession [6]. As well, in 2008, the internet's
Top Level Domain (TLD) systems were
systematically attacked by a DDoS, resulting in the
crashing of the entire internet for several hours.
These attacks are eventually thwarted, with the
quantifiable cost of financial loss, as well as the

immeasurable cost resulting from system downtime.
With attacks changing weekly, it is imperative for
detection systems to become more generalized to
accommodate for the ever-changing parameters of
what constitutes an attack. The need for such a
system sparked the topic of the 1999 Knowledge
Discovery and Data Mining (KDD) Cup competition.

The original paper published by Wilson et al. [1]
analyzed the results from the KDD Cup competition,
discovering that each system used a supervised
learning algorithm. These systems produced mixed
results for User-to-Root and Remote-to-Local
attacks. They sought to eliminate the programmer's
"understanding" of the problem, and allow the
system to learn without the encumbrance of a
programmer's self-conceived notions of how the
system should learn.

Self-Organizing Feature Maps (SOFM) were
used, with the aim of allowing the system to analyze
the raw data without human interference to create a
solution set which would separate the data into the
various intrusion types. Those intrusion types are
Denial of Service, Probing, User-to-Root, and
Remote-to-Local.

The research conducted by Wilson et al. [1]
showed solid results for successfully detecting
intrusions for all but one attack category. Their
system showed detection rates of 93%, 66%, 63%,
0% and 96% for denial-of-service, probe, user-to-
root, remote-to-local attacks, and normal traffic
respectively.

The glaring issue with these results was the
absence of successful detection for remote-to-local
attacks. This paper aimed to resolve this disparity by
implementing two enhancements upon the initial
method. First, in the training phase of the
methodology the dimension of data, used to
categorize similar data and ultimately determine
successful intrusion detection, was reduced.
Secondly, in the post-processing phase of the
methodology, a biased pruning algorithm was
implemented in order to increase the percentage of
successful intrusion detection within remote-to-local
attacks. Each of these approaches will be explained,
in conjunction with those found in [1], in Chapter 3.

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 132

2. Literature Review

In this chapter, an overview of network intrusion
detection and the 1999 KDD Cup competition will
be provided. As well, the functionality of a self-
organizing feature map will be explained in detail.

Network intrusion detection is the process of
detecting network traffic in order to passively, or
actively, prevent an attack on a system. Detection is
performed in one of two ways: anomaly detection
and misuse detection.

2.1. Anomaly Detection

Anomaly detection works by establishing a
baseline for normal network behaviour. A system
trained for anomaly detection analyzes known
"normal" network behaviour to establish this
baseline and, after successful training, is used to
detect any network behaviour outside of the
established baseline. This method is quite successful
in detecting any type of "non-normal" behaviour, but
has trouble defining specific intrusion types, and has
a very high false-positive rate. The high false-
positive rate is due to the system’s lack of experience
with the overall set of normal network behaviour. In
essence, the system flags any unknown traffic as an
intrusion.

2.2. Misuse Detection

Misuse detection works on the opposite principle
to anomaly detection. Misuse detection works by
analyzing known network intrusion patterns to
establish a signature for such an intrusion to be used
in analyzing future network traffic. This has the
advantage of having a very low false-positive rate
compared to anomaly detection, but has the
limitation of not being able to detect new intrusions
very well. Since network intrusions change rapidly to
counteract existing systems, misuse detection
systems fall short when detecting these new attacks
and are, traditionally, not ideal. As mentioned earlier,
the winner of the 1999 KDD Cup competition
detected 13% and 8% of U2R and R2L attacks
respectively [2, 9], within the testing dataset used.

2.3. 1999 KDD Cup competition

The 1999 Knowledge Discovery and Data mining
(KDD) Cup competition was designed to tackle the
issue of ever-changing network intrusions. This
competition is an annual event organized by the
Association for Computing Machinery (ACM)
Special Interest Group on Knowledge Discovery and
Data Mining, the self-proclaimed leading
professional organization of data miners [7]. The

task of the 1999 competition was to ”build a network
intrusion detector, a predictive model capable of
distinguishing between ’bad’ connections, called
intrusions or attacks, and ’good’ normal
connections” [8].

This task was undertaken by various groups from
around the world, each providing a unique
perspective on the problem, as well as different
systems for solving it. The general results were
promising, but with an obvious shortfall with the
detection rates for user-to-root (U2R) and remote-to
local (R2L) network intrusions. The winning system
posted correct detection rates of 13% and 8% for
U2R and R2L attacks respectively [2, 9]. This
seemed puzzling as a successful system should be
able to successfully detect roughly the same
percentage of attacks throughout each type. Further
analysis revealed a possible explanation that
suggested that the dataset itself was flawed, and that
the training and testing datasets showed a dissimilar
target hypothesis; implying that one could not be
trained to test for the other [10].

The KDD dataset is a set of data consisting of two
parts, training data and testing data. The training data
is a set consisting of approximately five million rows
of data, with the testing set consisting of
approximately five hundred thousand rows. These
rows are captured data packets, converted into
numerical values. Each row in the dataset consists of
4 initial classifiers, 37 float values, as well as a type
value. The type value is used to label the row to
illustrate if the data is of normal type, or if it is an
intrusion type.

2.4. The Self-Organizing Feature Map

Self-organizing feature maps (SOFMs) [11, 12,
13] are the brainchild of Finnish academic Dr. Teuvo
Kohonen. Dr. Kohonen is a prominent researcher and
is currently a professor emeritus of the Academy of
Finland. Kohonen has made tremendous
contributions to the field of artificial intelligence; his
most notable being that of the SOFM, or Kohonen
Map, named in his honor.

Before this paper delves into the inner workings
of a SOFM, the general concept must first be
explained. As mentioned earlier, a SOFM is an
unsupervised learning technique. This approach
differs from a traditional artificial neural network –
from which SOFMs are derived– as an artificial
neural network is supervised. Supervised learning
implies that the network being trained is trained in a
particular direction, and the success of the network is
determined by how well it learns in that direction.
SOFMs differ in this respect as they are not given a
formal direction in which to learn. Instead, a SOFM
is presented with a set of data and determines on its
own how best to learn that data. This technique has

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 133

both its advantages and drawbacks, which will be
discussed in the following sections.

Due to the unsupervised learning of the SOFM,
they are generally better suited towards classification
problems rather than forecasting problems, to which
artificial neural networks are vastly superior. In
general, considering SOFMs as a clustering
methodology goes a long way towards understanding
how they function.

It is with the realization that SOFMs are best
suited for classification that their design is based.
SOFMs are implemented as, usually, a two
dimensional grid, or map, of nodes, each with its
own candidate vector of data. As one can see in
Figure 1, the map of nodes is arranged as a grid.

Figure 1. A SOFM as a Grid

When creating a SOFM, the first consideration
one must make is how large a map is required. This
consideration is generally dependent on the number
of different classifications, or groups, that are
necessary. For instance, if there were only two
possible groupings, then having a map of 3000 nodes
is not logical. Contrastingly, if there are many
possible groupings, a sufficiently large map will be
required. The size of a map for any given problem
can be determined empirically, through several
intelligent estimations and simulations.

Secondly, a time interval is required which tells
the system when to stop training. Much like that of
the upper bound in a feed-forward network, this
interval, represented as (λ), imposes a hard stop to
training. This bound is checked after each row during
the SOFM’s training.

Thirdly, knowing the dimensionality of the data is
required. The SOFM must know how to reduce the
dimensionality of the data in order to represent it in
the two dimensional map. In order to achieve this,
knowing the dimensionality of the input vector is a
must. Again, this value is different for each problem,
and is easily deciphered.

Fourthly, and this is the most vital piece of
information in the initial setup, a neighbourhood
function must be selected. Neighbourhood functions
allow the training of the surrounding, or neighbour,
nodes of the map. The neighbourhood function is

represented as (θ(t)) A good example of a commonly
used neighbourhood function is that of the Gaussian
curve. The selection of this curve as a neighbourhood
function implies that the designer of the system
wants a few of the winner’s neighbours to be trained
along with the winner, and then have the influence of
the training gradually reduce as the distance from the
winner increases. Modifying this neighbourhood
function can change the learning of the map. For
instance, if the peak of the curve has its width
increased, it suggests that the designer would like a
larger radius around the winning node to be trained
more intensely than a by narrow peak. The candidate
node is treated as being at the peak of the curve.

Figure 2 illustrates the gradual descent of learning
on nodes around the winning, or candidate, node. It
can be observed that the learning around the
candidate node is circular. That implies that a
distance is calculated from the candidate node 360
degrees around it, to encompass every neighbour
node within the distance threshold. Figure 1.2 also
shows that as the distance increases, the effect of the
learning algorithm decreases (denoted by the ever-
thinner circles). This effect is known as gradient
descent and is important because one would hope
that only the closest nodes to the candidate node are
trained as effectively as possible.

Figure 2. Example of Gradient Descent

As stated earlier, once the initial values have been
determined, it is time to go ahead and train the map.
The learning algorithm for a SOFM has five steps.
Each will be described in detail. The variables
required are as follows:

t
λ
Wv
D
θ(t)
α(t)

=
=
=
=
=
=

Current Iteration
Iteration Limiter
Current Weight Vector
Target Input
Neighbourhood Function
Learning Restraint

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 134

It has been shown in the previous subsection that
the variables (λ, θ(t)) have been initialized in the
initial setup. The remaining variables will now be
explained.

t - Current Iteration

The variable (t) is the counter of the current
iteration through the SOFM’s training. This
variable is consecutively incremented until it is
greater than (λ).

Wv - Current Weight Vector

The variable (Wv) is the vector value stored in a
node that is used to find similarity between itself
and the input vector. These values are all set
randomly at startup, and are modified during
training. Because these values are initially
random, they do not represent any training data.
This is an important fact because it means that
the map does not compare input vectors to other
training data.

D - Target Input

The variable (D) is the target input and is the
input vector for any iteration (t). On each
iteration, an input vector (D) is selected from the
training data and is calculated against the
winning node in order to train the map.

α(t) - Learning Restraint

The variable (α(t)) is the learning restraint of the
SOFM. The learning restraint is responsible for
restricting the learning of the map as time
increases. This is implemented so that the map
learns much slower, and more gradually, near
the end of training, as to allow the map to
converge towards a solution set.

The SOFM learning algorithm follows five steps.
These steps are as follows:

1. Randomize the map's nodes' weight vectors
2. Grab an input vector
3. Traverse each node in the map

i. Use Euclidean distance formula to
calculate the similarity between the input
vector and the map's node's weight vector

ii. Track the node that produces the smallest
distance (this node is the winner)

4. Update the nodes in the neighbourhood of
winner by pulling them closer to the input
vector
Wv(t + 1) = Wv(t) + Θ(t)α(t)(D(t) - Wv(t))

5. Increment t and repeat while t < λ

Next, this paper will look at the methodology that
was undertaken.

3. Methodology

This chapter will explain the reasoning behind the
approach undertaken in this paper, as well as
adjustments that had to be made in order to integrate
the dataset into the SOFM.

3.1. Preprocessing

After analyzing the dataset, and because of the
unbiased nature of the SOFM neighbourhood
comparison algorithm, it was realized that some
preprocessing of the dataset is required before the
algorithm may properly read it. As opposed to other
machine learning techniques that employ biases in
order to balance the influence of certain columns of
data, the SOFM comparison algorithm uses a
Euclidean distance calculation which does not have
that luxury. Instead, because every column of data is
treated with equal significance, the data in the dataset
must be normalized in order to make each piece of
data relative to each other piece.

In order to normalize the data, the dataset is
loaded into memory, which each value being
transformed by the following formula:












)1log(max

ueInitialVal
ValueNormalized

The max value differs dependent on which

normalization type is used, local or global. When
using local normalization, max is the maximum
value of the column of data in which InitialValue is
found. When using global localization, max is the
maximum value of the entire dataset.

3.2. Training the SOFM

Training the SOFM conducted by [1] is rather
straight forward. The data from the training dataset is
read row by row, compared against the existing map
to determine the most similar node, the
neighbourhood is adjusted accordingly, and the
system moves to the next row. This entire process is
documented in Chapter two, and it is this exact
process that is followed for the map training in this
research. After the map has been sufficiently
exposed to the training dataset, it is time to begin
classification.

In order to reduce the complexity of the
comparison algorithm after the map has been trained,
the training dataset was once again compared against
the map. The data was compared using the same
Euclidean distance formula as prior but instead of
training the map further, a matrix was used to keep
track of the number of times a particular node on the

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 135

map was selected as the candidate node. This allows
for the data to be laid out on a two dimensional grid.

For this paper, the training of the map was
conducted in a similar manner as [1], but with the
difference being the reduction of the dimensionality
of data. Whereas their map trained the SOFM using
the 37 dimensions of data within the training dataset,
the work conducted in this paper reduced the
dimension to 26, a reduction of 11 columns, or 30%.
This was done to hopefully accomplish two things.
First, the reduction of data would decrease the map
training time, as well as the testing time afterwards.
Secondly, and most importantly, the reduction would
hopefully increase the percentage of successful
attack detection by relieving the Euclidean distance
similarity calculator of the useless data that this
author hoped had caused detection issues for the
remote-to-local attacks.

The idea for reducing the dimension of data came
from [3], where Baig et al. had chosen the fifteen
most influential features of data to train an AODE-
based intrusion detection system, with promising
results.

Figure 3. Results From Kayacik’s
Feature Relevance Analysis [4]

As for choosing which features to remove, an

analysis from Dalhousie University provided the
solution. Kayacik et al. [4] conducted a feature
relevance analysis on the 1999 KDD Cup training
dataset to determine which features were most
important to correctly classify the data. Their
analysis yielded the results shown in Figure 3.

Figure 3 shows there are several features that
offer very little information to the overall solving of
the intrusion problem, and even more that offer no
information at all. It is with these results that this
paper eliminated those features. For this paper, the
features were removed: 7, 9, 11, 14, 15, 16, 17, 18,
19, 20, and 21. These values represent the features
of the dataset which provide the least amount of
information to the task of differentiating attacks from
normal data. It is important to note that both [1], and
the work conducted in this paper, did not use features
1-4. After analyzing the results from [4], future

work should include possibly incorporating features
1-4, and especially features 2 and 3, as they yield the
5th and 6th most important information gain of the
entire dataset. This inclusion will be discussed in the
Future Work section of this paper.

3.3. Refinement

This section will explain the steps taken after the
initial training of the SOFM in order to reduce the
complexity of the analysis of the results, as well as to
reduce the false positive count for each attack type.

After the matrices had tabulated the sums of hits
on each particular node, a separate matrix for each
attack type (DoS, Probe, U2R, R2L, Normal), a
vector was created with the Cartesian points of each
“hotspot” –the spot in the matrix where the number
of hits was not 0– to further reduce the complexity of
the comparison for test data against the trained map.
These vectors dramatically reduced the number of
nodes checked in order to find the candidate node. In
the research conducted, the size of the map was
100x100. This creates 10000 cells that need to be
checked each iteration of the algorithm in order to
find the candidate node. By creating the vectors of
hotspots, the number of nodes that are required to be
checked is decreased 100-fold. Table 1 shows the
size of each of the vectors for each attack type, using
the 10% training set, as well as for local and global
normalization. Table 1 also shows that by using
global normalization, the number of hotspots
decreases, meaning that the map was trained tighter.

After analyzing the results with the hotspot
vectors and global normalization, it was discovered
that the false positive rate was somewhat high. After
some consideration and analysis, it was noticed that
some of the vectors overlapped on the map, causing
a hit on more than one vector, and skewing the
results. To improve upon this, a pruning algorithm
was implemented.

Table 1. Length of Hotspot Vectors [1]

Local
Normalization

Global
Normalization

10%
Training Set

DOS Size: 59
Probe Size:69
U2R Size: 11
R2L Size: 30

DOS Size: 32
Probe Size:34
U2R Size: 9
R2L Size: 22

The algorithm used for pruning the vectors was

simple, yet extremely effective. The algorithm used
compared each vector against each other vector, and
if any overlapping nodes were found, then the node
with the least positive influence on its respective
category was eliminated from the respective vector.
For instance, if an overlapping node was found in the
Probing vector and the Denial of Service vector, a

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 136

comparison was done between those two types. If the
node in question only provided 1 positive hit in
training out of 1000 for the Probing category, and
that same node provided 50 positive hits in training
out of 1000 for the Denial of Service category, then
the node would be eliminated from the Probing
vector and would remain in the Denial of Service
vector. Table 2 illustrates the reduction in the
number of hotspots due to the vector pruning
algorithm. The desire to implement such an
algorithm it is quite evident.

Table 2. Hotspot Vectors with Vector

Pruning [1]

Local
Normalization

Global
Normalization

Without Pruning

DOS Size: 59
Probe Size:69
U2R Size: 11
R2L Size: 30

DOS Size: 32
Probe Size:34
U2R Size: 9
R2L Size: 22

With Pruning

DoS Size: 39
Probe Size:58
U2R Size: 11
R2L Size: 22

DoS Size: 17
Probe Size:27
U2R Size: 8
R2L Size: 7

Figure 4 shows the results published by Wilson et
al. [1]. Figure 4 displays the successful classification
of three of the four attacks types, as well as a high
percentage of correct normal data classification.
What Figure 4 also shows is the lack of correct
detection of the remote-to-local attack type. This
flaw was the basis for the biased pruning algorithm
implemented in this paper.

Figure 4. Detection Rates With Vector

Pruning [1]

Wilson’s pruning algorithm removed the weaker

of the two conflicting hotspots, regardless of type.
The pruning algorithm implemented in this work
biased the pruning algorithm towards maintaining
hotspots for attack types, regardless of the negative
impact for other types; notably normal data
detection. A simulation was conducted with a bias
on the R2L vector when compared to the normal
vector. As Figure 4 shows, most of the false positive
results for the R2L attack type were found in the
normal data so this is, naturally, where a bias would

be most useful. Figure 6, found in the next chapter,
displays the results of this simulation.

4. Results

After refining the method undertaken by [1], and
conducting simulations to attempt to improve their
results, this paper has found the following.

Figure 5 shows the results of the reduced-feature
SOFM training and testing. The results from Figure
5 show a reduction in detection rate for denial of
service, user-to-root, and normal data, but an
increase in the detection rate of probe attacks by
11%. These results show that removing the least
important features does not have the overall effect of
increasing detection rate, as was initially thought.
Instead, the elimination of these features only
improved the probe attack detection rate. The
remote-to-local attack rate remained at 0%, which
reinforces the need for a biased pruning algorithm.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

DoS Probe U2R R2L Normal

Attack Type

P
e

rc
e

n
ta

g
e

DoS Probe U2R R2L Normal

Figure 5. Results From Feature Reduced
SOFM Training

Figure 6 shows the results of the R2L-biased

pruning algorithm.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Dos Probe U2R R2L Normal

Attack Type

P
e

rc
e

n
ta

g
e

DoS Probe U2R R2L Normal

Figure 6. Results From R2L-Biased
Vector Pruning Simulation

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 137

These results show that implementing a biased
pruning algorithm on a full-feature set-trained SOFM
yields a 12% improvement for R2L attacks, but this
advancement brings with it a drawback of 41%
positive detection for normal data. Figure 6 shows
only a 55% positive detection rate for normal data.
Figure 6 shows one other key piece of information.
It shows that the SOFM is unable to completely
separate R2L data from normal data. By biasing the
pruning algorithm into forcing successful R2L
detections, the algorithm eliminates normal attack
detectors that exist on the same SOFM node, causing
the high false positive rate.

One last result of note is the overall detection rate.
Reducing the number of features used to train and
test the system caused the overall detection rate to
rise 0.27%, from 99.45% to 99.72%. Although this
may seem like a marginal amount, it equates to a
detection increase of 1104 new rows of data from the
testing dataset not previously detected by [1].

5. Conclusions

After conducting research into improving the
original work by Wilson et al. [1], this author has
concluded that the biasing of the pruning algorithm
has more of a detrimental effect than a positive one.
The reduction of features from the dataset yielded a
slight increase in probe detection rates, but also
yielded a slight reduction for denial-of-service, user-
to-root, and normal data. This author feels that more
work into feature selection is needed before an
ultimate conclusion can be drawn on this matter.
Most important is the inclusion of features 1-4, as a
discretized value, which may yield more positive
results in the future.

6. Future Work

Future work in this area of research is abundant.
There are a few key areas that are of particular
interest to this author.

First, this author would like to complete a feature
relevance analysis for the testing dataset to see which
features align, and which differ, from the training
dataset as shown in the feature analysis above. The
lack of improved results by reducing features implies
that the training and testing datasets should have
different feature relevance graphs.

Second, creating a vote-based system of SOFMs
is of particular interest. This author feels that a more
specific system, accomplished by separating the data
amongst different maps, would help to separate the
R2L data from the normal data, and would
dramatically increase results.

Third, this author would be interested in testing
this system against another dataset. The KDD Cup
dataset, used in this and other work, is in known for
being particularly difficult to work with. Since this

system has provided very impressive results relative
to other systems, it would be interesting to see how it
fares with other datasets.

7. Acknowledgements

The authors would like to thank NSERC for support.

8. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Ryan Wilson and Charlie Obimbo. Self-
Organizing Feature Maps for User-to-Root
and Remote-to-Local Network Intrusion
Detection on the KDD Cup 1999 Dataset,
Proceedings of World Congress on Internet
Security (WorldCIS-2011), pp. 56-61, 2011.

Bernard Pfahringer. Winning the KDD99
Classification Cup: Bagged Boosting. SIGKDD
Explorations, 2004.

Zubair A. Baig, Abdulrhman S. Shaheen, and
Radwan AbdelAal. An AODE-based Intrusion
Detection System for Computer Networks,
Proceedings of World Congress on Internet
Security (WorldCIS-2011), pp. 42-49, 2011.

H. Günes Kayacık, A. Nur Zincir-Heywood,
Malcolm I. Heywood. Selecting Features for
Intrusion Detection: A Feature Relevance
Analysis on KDD 99 Intrusion Detection
Datasets.

Jose Nazario. Russia: Opposition Websites and
DDoS. http://asert.arbornetworks.com/2009/01/
russiaopposition-websites-and-ddos/,
January 2009. Accessed: April 01, 2010.

Nathan McFeters. Recent CNN distributed
denial of service (DDoS) attack explained.
http://www.zdnet.com/blog/security/
recentcnn-distributed-denial-of-service-ddos-
attackexplained/1054/, April 2008. Accessed:
April 01, 2010.

ACM KDD Cup. http://sigkdd.org/kddcup/
index.php. Accessed: January 01, 2010.

KDD Cup 1999 Data. http://kdd.ics.uci.edu/
databases/kddcup99/ kddcup99.html, October
1999. Accessed: January 01, 2010.

Maheshkumar Sabhnani and Gursel Serpen.
Why Machine Learning Algorithms Fail in
Misuse Detection on KDD Intrusion Detection
Data. Intelligent Data Analysis, 8:403–415,
September 2004.

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 138

[10]

[11]

[12]

[13]

Ali Ghorbani, Wei Lu, and Mahbod
Tavallaee. Network Intrusion Detection and
Prevention: Concepts and Techniques.
Springer, New York, NY, July 2009.

Teuvo Kohonen. Self-Organization and
Associative Memory. Springer, New York,
NY, 1989.

Teuvo Kohonen. Self-Organizing Maps, 3rd
Edition, Springer-Verlag New York Inc.,
Secaucus, NJ, 2001.

Yonggang Liu, Robert H Weisberg, and
Christopher N. K. Mooers. Performance
Evaluation of Self-Organizing Map For
Feature Extraction, Journal of Geophysical
Research, Vol. 111, 2006.

International Journal for Information Security Research (IJISR), Volume 2, Issue 2, June 2012

Copyright © 2012, Infonomics Society 139

