
 

An Evaluation of Secure Storage of Authentication Data 
 

 

Juanita Blue1, Eoghan Furey1, Kevin Curran2 
1Letterkenny Institute of Technology, Ireland 

2Ulster University, Northern Ireland 

 

 

Abstract 
 

The issue of secure password storage is of major 

industry concern, as all databases are at risk of 

breach, potentially leaving all associated user 

accounts vulnerable. Key industry documents such as 

‘IEEE Standard Specifications for Password-Based 

Public-Key Cryptographic Techniques’ and ‘RFC 

2898: Password-Based Cryptography Specification’ 

outline best practice mechanisms for secure storage 

of authentication credentials. We examine here 

authentication and secure storage of authentication 

data, inclusive of common industry implementation 

and best practice standards and regulation. The 

broader topic of authentication is examined to assess 

‘state-of-the-art’ technologies that are currently 

available. The technologies researched included 

biometrics, multifactor authentication and smart 

cards and we show that despite the advancements 

these technologies have contributed to the area of 

authentication, it is unrealistic to expect their 

common implementation soon. 

 

1. Introduction 
 

Cyber theft is simply becoming the fastest 

growing crime in the world. Gartner reports that this 

rising tide of cybercrime has pushed cybersecurity 

spending to more than $80 billion in 2016 [1]. Due to 

the sensitive nature of attacks and breaches, 

governments and organisations are reluctant to 

disclose the details of system vulnerabilities that 

have facilitated these attacks (disclosure itself 

exacerbates such vulnerabilities) [2].  For this reason, 

there is difficulty in identifying an exact figure 

relating to theft of authentication data. However, it 

can be stated that exposed authentication data (by 

way of SQL injection or otherwise) often acts as a 

gateway to greater breaches including compromised 

user accounts, privilege escalation, code injection 

and unauthorised direct disk access [3]. Based on this 

premise, a substantial portion of the sum could be 

attributed to insecure authentication data storage.  

Securely stored authentication data is a paramount 

element of system security.  Passwords are 

implemented as a security feature, providing 

authentication, authorisation and accounting [4]. 

They are used as a proven mechanism that prevents 

unauthorised access to a system.  Organisations often 

include guidelines in their security policy that define 

password length, entropy and period of use, but often  

 

 

neglect to define how these passwords should be 

securely stored. Best practice guidelines advise that 

at minimum, authentication data should be:   

  

• Salted with a random string of not less than 32 

bytes  

• Encrypted/hashed using a one-way, proven and un-

cracked cryptographic hash function (sha256, 

sha512)  

• The output of this hash function should be rehashed 

for no less than 1000 iterations [5, 6].  

  

Despite the readily availability of best practise 

guidelines relating to authentication data storage, it is 

clearly often an oversight that results in a significant 

risk to industry.  As stated in IEEE document entitled 

‘An Authentication and Auditing Architecture for 

Enhancing Security on eGovernment Services’, 

“…the lack of security at the backend level hinders 

every effort to find evidence and investigate events 

related to credential misuse and data tampering”.  

Control measures are wrongly applied at application 

level, and should be applied at database level instead 

[7]. It is unlikely that organisations will openly 

declare that they do not store authentication data to 

best practise, as doing so poses a grave threat to their 

user accounts, customer data and system security, not 

to mention their reputation.  Equally, it is unlikely 

that all organisations will improve or replace their 

existing insecure infrastructure in the foreseeable 

future.  If the solution could be developed using 

existing staple technology, it could invaluable to all 

facets of industry.  The solution could be discretely 

applied to the existing infrastructure by an 

administrator, to mitigate risks associated with 

compromised authentication data at minimal cost, 

effort and downtime.   

 

2. Authentication  
  

There are three main categories of means by 

which individuals can authenticate and verify their 

identity.  These categories are defined as ‘something 

you know’ (password, pin), ‘something you have’ 

(token, key fob) and ‘something you are’ 

(fingerprint, iris pattern).  Organisations that possess 

higher data-confidentiality requirements have 

extended their user-authentication systems beyond 

the database driven and/or directory driven 

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 744



components, like passwords, traditionally used in 

web applications.  Implementation of strong 

authentication systems spans from simple extensions 

of existing architectures to high-tech integrated and 

interconnected technologies.  Some of the latest 

developments and implementations are as follows.  

  

2.1. Biometrics  
  

Biometrics is a form of authentication where one 

or more of a person’s biological traits are analysed to 

verify their identity.  The physical characteristics 

analysed can include fingerprints, hand or earlobe 

geometry, iris or retina patterns, voice waves, 

handdorsa vein recognition, DNA and signatures [8, 

9]. To form biometric ‘identities’, raw biometric data 

is collected in analogue form and converted to digital 

data that is computer readable.  Advancements in 

digitalisation of analogue data have allowed personal 

identification by biometrics to become almost 

instantaneous.  Typically, organisations that have 

employed the use of biometric authentication are 

those who require higher levels of security such as 

military bases, government research facilities and 

financial institutions with large vaults.  However, as 

single factor authentication is considered more 

vulnerable, regular companies are now seeking 

twofactor solutions that incorporate biometrics [8]. 

To date, iris and retina pattern authentication have 

been used by some bank ATMs, voice wave 

recognition has been used for access to databanks in 

research facilities and hand geometry is used in 

authentication for access to buildings.  Law 

enforcement organisations have employed the use of  

facial recognition for identifying individuals in large 

crowds and earlobe geometry has been used to prove 

identity in cases of identity theft [10].  

Regardless of the type of individual traits that are 

used for authentication, all digitalized data is stored 

in databases.  Biometric data storage invokes the 

same basic infrastructure as passwords and is 

vulnerable to the same threats [8].  The secure 

storage of biometric authentication data has recently 

been highlighted by the breach of OPM in 2015.  In 

June of 2015, 5.6 million fingerprints were stolen by 

attackers.  Although the attack was downplayed by 

the company, security experts maintain that it poses 

serious implications.  Misuse of the fingerprint data 

may currently be limited, but it could be useful in 

future exploitation as authentication by biometrics 

continues to be employed [11].  Unlike passwords or 

credit card numbers, fingerprints cannot be changed.  

Each set of fingerprints stolen can realistically be 

interpreted as a stolen verified identity.  As biometric 

authentication is immutable, it is difficult to recover 

from credentials that are compromised.  Some forms 

are easier to compromise than others.  Iris and retina 

patterns and other biometric data such as 

electrophysiological signals are currently difficult to 

replicate.  Fingerprints, however, are left everywhere 

daily and are easy to forge with use of ballistic gel 

and similar products [10]).  Fingerprints are also not 

guaranteed too be unique and can possess 

characteristics that are similar enough to be accepted 

by biometric authentication systems [11].  Facial 

features can also be reproduced and voice waves can 

be recorded.  Biometrics do not provide absolute 

assurance of verified identity and in some cases may 

be deemed unreliable or fall victim to spoofing [12]. 

The use of biometrics for authentication poses 

several key challenges, not limited to the theft, 

replication and unreliability, but other factors that are 

more inclined to impact widespread implementation.  

The technology is complex and expensive to deploy, 

two major factors that would deter organisations 

from incorporating it [8]. Biometric data may offer 

improved authentication features, but the associated 

data is still stored in structured databases and 

vulnerable to theft.  Consequently, recommended 

best practice mechanisms must still be invoked to 

ensure security while the data is in transit and 

storage.  

  

2.2. Two-Factor and Multi-Factor 

Authentication  
  

Two-factor authentication requires a user to 

provide two forms of identification, each from a 

different category.  Usually this is implemented by 

knowledge, such as a security code or password, and  

a possession, such as a card or physical token.  An 

ATM card is a prime example of two-factor 

authentication (using a card and a PIN).  Multifactor 

authentication operates in the same manner but with 

more than two factors (that include the third 

category).  Multi-factor applications are available for 

Apple, Blackberry and Google OSs. Some 

incorporate the use of biometrics or use GPS to 

verify location as an additional factor.  One-time 

passwords are also a popular implementation, 

allowing users to receive a code that enables the 

phone to satisfy the possession factor.  Breach of two 

or multi-factor authentication generally involves 

physical access to the target individual and/or their 

environment.  Matthew Prince, CEO of Cloudflare 

suffered a breach of his email account despite the use 

of two-factor authentication [13].  This attack was 

meticulously orchestrated and involved the deception 

of both AT&T and Google [14]. Despite this 

example, there are certainly additional obstacles set 

in place with each factor.  Independence from one 

another means that compromise of one factor does 

not usually lead to the fall of another (Strom, 2014).    

 PCI-DSS, HIPAA, The Gramm–Leach–Bliley 

Act (GLBA), The Sarbanes-Oxley Act (SOX) and 

The Criminal Justice Information Services Division 

(CJIS) all recommend the use of two-factor 

authentication in their compliance documents [15].  

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 745



NIST also advocates the use of tokens as part of 

twofactor authentication.  However, the possession 

category of authentication can be bypassed with a 

boot from BIOS, leaving access restrictions 

dependent on the strength of the remaining factors 

[16].  ‘Possessions’ are also susceptible to loss, theft 

and damage.  Regardless of the second factor, the 

knowledge category is generally a password, stored 

in a database and is vulnerable to the attack vectors 

unless stored to best practice [17].  

 

2.3.   Smart Cards  
  

Used as a part of possession credentials, smart 

cards operate as standard plastic cards embedded 

with integrated circuits or microprocessors.  This 

form is authentication is deployed as an element of 

two or multifactor authentication and is used as part 

of a government-sponsored electronic-ID program in 

several European countries [11]. In the countries that 

employ their use, smartcard readers are integrated 

into standard hardware such as PCs and laptops.  

Authentication required for access to 

governmentrelated accounts (taxes, social welfare) is 

gained by insertion of the smartcard, combined with 

a password.  Mobile phone technology has also 

become integrated with the smart cards, the SIM 

often acting as the proof of identity and the phone 

acting as the reader for one-time passwords [11].  

 Despite the assurances offered by smart cards, 

the authentication data they are dependent upon is 

once again stored in a structured database.  

Additionally, this information is stored along with 

several other pieces of sensitive information, all 

relating to the identity of individuals.  Successfully 

implementing a one-way hash system that protects 

smart cards from attack vectors including brute-

force, dictionary and many more types of attacks has 

proven challenging [18].  Despite utilizing start of 

the art technology, the use of smart cards in 

authentication is still only as secure as the 

mechanisms employed in the database that protects 

the associated information. As demonstrated by the 

discussion of state-of-the-art mechanisms in 

authentication, all forms of authentication data must 

be stored in databases to enable their functional use.  

Regardless of how effective that mechanism itself is, 

the data remains vulnerable to simple attacks such as 

an SQL injection.  Policy and regulation relating to 

authentication other than passwords is lacking.  

PCIDSS, SOX, GLBA and HIPAA documentation 

all focus entirely on password storage, disregarding 

biometric [10] and smartcard technologies.  

However, if industry were to comply with best 

practice recommendations, all types of authentication 

data would be stored with salt, one way hashing and 

iterations at minimum.  

  

Furthermore, two and multi-factor authentication 

are still reliant on the use of passwords as part of the 

authentication process.  This reiterates the 

importance of best practice storage of the data in 

question.  Passwords that are poorly stored will 

provide an easy hurdle for an attacker. Given the 

great expense and complexity of biometric 

authentication, it is unlikely it will become heavily 

integrated in our daily lives in the foreseeable future.  

Additionally, the increased expense of two and 

multi-factor authentication (including smart cards) 

and the inherent reliance on databases mean that 

passwords will remain the main form of 

authentication for some time.  The focus must shift 

to adhering to best practice password policy and 

storage; creating strong passwords that aim to be 

impossible to crack in the case of a database breach.  

 

3.   Passwords  
  

Passwords are the most common form of 

authentication.  For passwords to be effective, they 

must adhere to basic standards to avoid weaknesses 

that enable password guessing and more 

sophisticated attacks such as brute force or dictionary 

attacks.  Dictionary attacks are executed with 

automated tools that attempt known dictionary words 

repeatedly until access is gained to a system [19]. An 

example of one such tool is ‘John the Ripper’.   To 

comply with several industry regulations, it is 

necessary for enterprises to have stringent password 

management requirements.  These requirements are 

defined and documented in the security policy of 

most organisations [10].  Password management is 

implemented as a mitigation strategy for risks 

associated with system authentication but as 

described in this document, often the policies are 

outdated or ineffectively implemented.     

 

 
Figure 1: Vulnerabilities of common password 

policy implementation [20] 

 

 

 

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 746



Documents containing best practice guidelines 

relating to password creation are freely available 

online.  These recommendations are produced by 

security professionals such as Bruce Schneier, Brian 

Krebs and security authorities like OWASP.  

Unfortunately, consultation of outdated documents 

and poor interpretation has resulted in security 

policies that are weak and not tailored meet to best 

practice advisements.  Bruce Schneier identifies the 

two main issues of password cracking as 

irresponsible use of cracked hashing mechanisms 

such as MD5 and non-randomized passwords 

produced by account holders.  As organisations 

themselves define the security policies that police 

both these issues, they are ultimately deemed 

responsible [19].  Good password creation policy has 

two integral factors: length and entropy.  Entropy is 

largely associated with password length rather than 

the randomization of the string itself [21].  Common 

policy implementations have encouraged or enforced 

users to replace letters with obvious symbols to 

maintain memorability while creating supposed 

randomness, as in Figure 1. This has cultivated an 

environment where passwords have become difficult 

for humans to remember and easy for computers to 

guess, as demonstrated by Figure 2.  

 

 
 

Figure 2: Password policy complexity quandary [20] 

 

3.1. Password Length  
  

As any system user’s personal experience would 

indicate, minimal length for a new password is eight 

characters. This commonly-defined length is 

historically based on legacy Unix passwords from 

the 1980’s with a DES-based crypt() function that 

were limited to 8 characters (the high bit of each byte 

was ignored).  Eight-character long passwords were 

deemed the best and safest option that could be 

hoped for [22].  Currently, experts claim that any low 

entropy password that is less than 14 characters in 

length probably has its hash value registered in a 

rainbow table (a list of pre-computed hashed values 

for dictionary words and known popular passwords) 

[23].  Passwords of this length or less are considered 

extremely vulnerable to a plethora of different 

attacks. Common password policy enforced by 

organisations has simply not remained abreast with 

the advancements in computational processing power 

and the increasing number of attack vectors.  

Additionally, as outlined in the following 

subheading, password length has a large impact on 

password entropy.  This acutely increases the 

importance of password length when attempting to 

implement a high entropy password.  Interestingly, 

the regulatory and compliance documents, such as 

PCI-DSS, recommend use of a ‘long’ password, but 

do not stipulate the actual length that should be 

implemented.  

  

3.1.1.   Password Entropy. The idea that ‘password 

complexity trumps length’ is a myth [12].  Entropy 

offers a representation of the level of randomness 

contained within a password.  This concept can then 

be translated into a form that conveys how 

computationally difficult it is to crack a password.  

Using a long string of words that have no logical 

relationship with one another such as 

‘JapaneseHamburgerDragonCelticFoot’ is far more 

effective than simply replacing letters with typical 

symbols in a short password string [23], for example, 

Manchester becomes M@nch35t3r. It is widely 

advised that any password implementation that uses 

names, repeating characters, sequential numbers, 

well known keyboard entries (qwerty) or personal 

interests that can be easily enumerated should be 

avoided.  However, these guidelines are seldom 

displayed on the interfaces that prompt password 

creation.  When implementing a password policy, 

length and random text should be prioritised over 

character complexity.  This renders the current trend 

of including uppercase, lowercase, numerals and 

symbols in every password a fallacy. Computational 

entropy can be measured on binary bits where:  H = 

The binary bit length of the password, L = The 

character length of the password and Log_2 = Log 

function (base 2).  N = The number of possible 

characters/symbols in the password and the formula 

for measurement of binary bits can be defined as 

H=L*Log_2(N). The entropy per bit is gained from 

the length of the password (L), not the possible 

symbols (N).  

As demonstrated by the experimental project 

RC5, conducted by Distributed.net, it took volunteers 

in the organisation 1,726 days (4.5 years) to find a 

64bit key encrypted with RSA.  In contrast it only 

took the group 193 days (6 months) to find a 56-bit 

key also encrypted with RSA (Distributed.net).  

Table 1 demonstrates how entropy per bit can be 

controlled by the selecting password length and the 

symbols that may be included in the pool. According 

to Table 1, to achieve entropy per bit of 64 only 

using numbers, a password would have to be 20 

characters long.  In contrast, a password length of 

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 747



only 13 is required if the desired entropy per bit is 80 

and all the ASCII characters may be used. Currently 

the recommended entropy per bit stands at a 

minimum of 72-bits [21].  Based on the table above, 

this indicates that password length should lie 

somewhere between 12 and 23 characters, depending 

on the number of symbols that are included in the 

pool. 

 

Table 1: Entropy per bit based on length & symbol 

pool [21] 

 
 

3.1.2. Password Lifespan. Although implementation 

of a password lifespan is generally an enforced 

element of organisational password policy, research 

suggests that no security benefits are gained from 

frequent password changes.  A password update is 

commonly required in organisations once every 30 

days.  This is based on the legacy mainframe systems 

that operated without networking.  At that time, the 

biggest authentication risk was password cracking.  

It was calculated that to try every possible password 

would take a system at least two months.  Hence the 

expiry date was set to 30 days [24].   Several security 

experts claim implementation of a password expiry 

has negative effects as users forget their current 

password and are more inclined to document it on a 

post-it or somewhere near their PC [25].  Gene 

Spafford insists that provided passwords are of 

acceptable length and entropy, are stored correctly 

and have not been disclosed, there is no actual 

security-based reason to regularly update them on a 

system (Spafford, 2006).  Despite this argument, 

regular updating of passwords is recommended by 

PCI-DSS and HIPAA but NIST in 2017 issued new 

guidance to stop this habit [26].  

Regardless of their critical role in online 

authentication, passwords suffer from several in 

tractable weaknesses [32].  Even with policies 

implemented that dictate password length, 

randomness and life-span, they remain vulnerable to 

both cracking and theft.  Many organisations have 

orchestrated policies that focus on password length 

and ‘randomness’ as a safeguard against brute-force 

and dictionary attacks, though as demonstrated 

above, high-entropy is seldom truly achieved.  

Although increased complexity should be invoked to 

protect against password guessing (based on 

enumeration and social engineering), brute-force and 

dictionary attacks, it provides no defence against 

password theft.  If an authentication database is 

compromised, every password stored may potentially 

become a tool that could be employed to commit 

further crimes.  No matter how complex, 

authentication data must be stored and to be 

effective, it must be stored to best practice.  

  

3.1.3. Password Attacks. A proxy server is a 

dedicated computer on a network or virtual system 

running on a computer that acts as an intermediary 

between an endpoint device and another server from 

which a user or client is requesting a service.  An 

advantage of a proxy server is that its cache can 

serve all users.  Proxy servers are used for both legal 

and illegal purposes. In the enterprise, a proxy server 

is used to facilitate security, administrative control or 

caching services, among other purposes. In a 

personal computing context, proxy servers are used 

to enable user privacy and anonymous surfing. A 

man in the middle attack involves an actor, who 

inserts themselves in between two parties 

communicating (Figure 3).  The actor impersonates 

both parties and gains access to the information that 

is being transferred [12].  Man-in-the-middle attacks 

can be typically executed using ARP poisoning or 

spoofing where falsified Address Resolution 

Protocol (ARP) messages are sent over a local area 

network (LAN).  The attack machine is then capable 

of intercepting data intended for that IP address. 

 

 
Figure 3: Typical Man-in-the-Middle attack 

 

Cain & Abel is an application that is utilised for 

password recovery and possesses capacity to execute 

Arp poisoning, dictionary, brute force and 

cryptanalysis attacks, in addition to recording VoIP 

conversations and the possibility to analyse route  

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 748



protocols.  It is comprised of two major components, 

Cain that operates as the front-end application that 

sniffs and recovers passwords and Abel, a Windows 

service that scrambles the traffic inside the network, 

for additional protection.  

 

4. Storage of authentication data  
  

The methods commonly implemented to increase 

password strength may combat password guessing 

and dictionary attacks, but they provide no safeguard 

against password theft.  It is considered standard 

practice in secure systems to keep authentication data 

private.  Compromised credentials can have grave 

ramifications for the victim organisation and other 

websites and applications where users have 

implemented an identical password.  Additionally, 

depending on the type of organisation, there may be 

legal and regulatory requirements, such as PCI-DSS 

and SOX.  To keep systems safe, secure storage of 

authentication data is of paramount importance. 

Several set guidelines for the secure storage of 

passwords include ‘IEEE Standard Specifications for 

Password-Based Public-Key Cryptographic 

Techniques’ [5], ‘IETF Password-Based 

Cryptography Specification’ [27] and ‘OWASP 

Password Storage Cheat Sheet’ [28]. They all 

advocate a minimal standard of Salt, One-way 

hashing and Iterations. Systems that do not invoke 

these methods are quite simply non-compliant with 

PCI-DSS and other compliance document, as they 

have not implemented ‘secure storage’.  For optimal 

security, each of the elements must be implemented 

as per recommendation and prior to storage in a 

database.  None of these methods are new, each has 

been utilised for at least two decades.  However, they 

remain the key factors on which industry best 

practice is based and when implemented correctly 

prove extremely effective.  The implementation 

variables may have changed in the form of increased 

number of salt bytes and iterations, or use of 

improved one-way hash mechanisms, but the core 

mechanisms recommended remain the same.  

  

4.1. Salt  

  
Salt is the general term for a random string of 

data that is concatenated to a plaintext password 

prior to input into a one-way hash function.  Salt is 

used to prevent a system collision where another user 

has selected an identical password, as each salt string 

is unique and it is also used to secure against attacks 

where hash-matching strategies are invoked.  These 

include Rainbow Tables Attacks, Brute Force 

Attacks and Birthday Attacks. It is recommended 

that the Java class SecureRandom () is used to 

produce salt strings.  It is designed to be 

cryptographically secure and purpose built for 

security purposes such as generating session IDs and 

encryption keys.  Use of weaker random number 

generators such as Java’s Random () class is 

discouraged as they have known hidden biases [28]. 

Use of salt is intended to deter attackers from 

attempting to decrypt an entire database of 

passwords.  For a single password hashed with 12bit 

salt, a different rainbow table would have to be 

created for each possible salt value.  An attacker 

would need to produce 2 to the power of 12 (4096) 

rainbow tables.  For 8 byte salt, this number would 

jump to 2 to the power of 64 

(18,446,744,073,709,551,616). The IETF RFC 2898 

documentation of PKCS5 recommends the use of a 

64-bit salt string (8 bytes).  A more recent evaluation 

recommends a salt string length of 32 bytes, 

calculated as 256 bits [28]. Even though the concept 

of salt has been present for nearly two decades, it is 

still the most highly recommended [29] and proven 

method to prevent against attacks that target entire 

authentication databases.   

  

4.2. One-way Hashing  
  

This is the umbrella term for various algorithms 

that convert variable-length text to a fixed-length 

string of digits for data management or security 

purposes.  Once converted, it is almost impossible to 

derive the original text from the string produced.  

Identical text inputs will produce identical fixed 

length string outputs, and a minimal one-bit 

difference will produce an entirely different output.    

 

 
Figure 4: Message digest function (SHA-1) 

 

These algorithms are commonly used with public 

key technology as an element of authentication.  

Certain datasets and use of obsolete hashing 

mechanisms can produce collisions where varying 

inputs produce an identical output. However, 

although this has occurred, it is uncommon and takes 

much computational effort.  Encouragingly, for 

SHA-256 and SHA-512 message digest algorithms it 

remains mathematically and computationally 

improbable that a collision shall occur. A good one 

way hash function must possess the following 

properties:  

  

• Preimage resistance: Impossible to compute the 

output y from the input x  (hash(x) = y)   

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 749



• Second preimage resistance: Impossible to compute 

input x1 from another input x2 (hash(x1) = hash(x2))   

• Collision resistance: Difficult to find two inputs x1 

and x2 (hash(x1) = hash(x2)) (OWASP, 2010)  

 

Message digests such as MD1, MD2 and MD5 are 

now considered cryptographically insecure as 

documented collisions have occurred (Figure 4).  

Use of the 160-bit SHA-1 is currently being 

depreciated by browsers due to a recently discovered 

susceptibility to collisions and pre-image attacks 

[30].  Despite loss of Federal Information Processing 

Standards (FIPS) approval, many of these obsolete 

and insecure message digest functions are still in 

common use by organisations globally.  Where 

oneway hashing has been implemented using these 

algorithms, authentication data is once again 

vulnerable.    

Security authorities now advocate the use of FIPS 

approved SHA-256 (256-bits) and SHA-512 

(512bits) in authentication, although there are certain 

compatibility issues that need to be addressed before 

working implementation can be finalised for digital 

certificates and the like [31]. Based on the strength 

of SHA-256 and the increased length of the output 

(and therefore increased entropy as previously 

discussed), this one-way hashing mechanism is 

deemed highly appropriate for use in authentication 

data protection.    

 

4.3. Iterations  
  

Iterations describe the number of times the output 

from a one-way hashing function is re-hashed.  The 

use of iterations increases the computational power 

and time cost of reproducing a key derived from a 

hashed and salted password.  Also known as ‘key 

stretching’ and ‘slowing’, this increases the difficulty 

of an attack on an authentication database. The best 

practice recommendation is set at ‘not less than 

1000’ iterations [28].  As this number increases the 

cost and difficulty of an exhaustive search 

significantly, yet avoids a noticeable impact on a 

legitimate user deriving individual keys. The 

parameter included in the IETF standard was 

intended to increase over time as CPU power 

improved.  In 2005, a Kerberos standard 

recommended 4096 iterations. In 2010 Apple 

incorporated 10,000 iterations for their iTunes 

authentication database [28], while in 2011, LastPass 

used 5000 iterations for JavaScript clients and 

100,000 iterations for server-side processing.  

  

4.4.  PBKDF2  
  

IEEE, IETF, NIST and OWASP recommend the 

JavaScript implementation of the password-based 

key derivation function 2 (PBKDF2).  The function 

belongs to a family of PBKDs developed to automate 

secure processing of authentication data.   The 

operation of PBDKF2 is shown in Figure 5.  During 

pre-storage PBKDF2 processing the function intakes 

five parameters, including original password, salt, 

salt length, hashing type and iteration count. 

 

 
Figure 5: PBDKF2 Function (NIST, 2010) 

 

References to storage of authentication data in 

PCIDSS documentation, simply states under 

requirement 8.2, that the data must be stored 

securely.  Compliance documents do not stipulate 

how achieve items on their checklists.  However, 

failure to implement measures correctly results in 

non-compliance.  Interestingly, the HIPAA 

document makes no reference to storage at all.  

Despite this over-sight, the mechanisms, 

implemented as per recommendation are considered 

best practice in relation to storage of authentication 

data according to NIST, IEEE, IETF and OWASP.    

When PBDKF2 is executed with a secure one-

way hash function (SHA-256), a salt of 

recommended length (32 bytes) and an acceptable 

number of iterations (5000+), this security measure 

provides an effective safeguard against the useful 

theft of passwords stored in authentication databases.  

This is inclusive of passwords that do not meet the 

basic criteria of best practice password policy 

(passwords that are short in length with low entropy).  

Up until mid-2015, SHA-1 was the best practice 

recommended one-way hash mechanism.  Based on 

recent developments, organisations that previously 

enjoyed best practice compliance, may have to 

reevaluate implementations.  The SHA-1 algorithm 

now poses a serious security risk and 

implementations must be updated to SHA-256 

wherever possible.  

  

5. Evaluation of Authentication Storage 

Mechanisms  
  

Several ‘Password Management’ applications 

were identified that offer mechanisms for 

strengthening passwords.  It was established that 

these applications were essentially pluggable 

extensions that strengthen singular passwords for 

various website accounts.  Each application invoked 

variations of best practice methods including one-

way hashing, key-stretching (iterations) and salt.  

The mechanisms were generally applied at the client-

side of a specified browser.  It was swiftly surmised 

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 750



that these applications were intended for private use 

by individuals wishing to strengthen authentication 

for assorted personal accounts.  These applications 

could not operate as valid solution for organisations 

to improve password storage at the back-end.  No 

commercial applications were discovered that assist 

administrators in applying best practice security 

measures to webserver/authentication database 

infrastructure.   

 Personal use of password managers is 

encouraged by industry professionals such as Brue 

Schneier1. Many commercial varieties such as 

Dashlane and LastPass are freely available.  The 

applications discussed here encompass the original 

legacy applications that modern versions are based 

on.  Documentation relating to the internal structure 

and functionality of modern implementations was 

scant.  This was attributed to the risks involved in 

documenting the architecture of applications that are 

intended to improve online account security.   The 

following applications were assessed for 

functionality and effectiveness:  

  

5.1. Password Agent  
  

This application converts low-entropy passwords 

used in web account authentication, to a more secure 

option.  It invokes enhanced hashing by way of a salt 

repository server and a browser plug-in.  The salt 

repository stores a list of salts for each account while 

the plug-in (Agent) provides a user interface, salt 

retrieval and hashing function.  When the user 

requires a new secure password for a website, they 

activate the agent and enter a plaintext password into 

the text field.  The web-site specific salt is 

automatically concatenated to the plaintext password 

and the string is hashed to generate the stronger, 

more secure password.  Each time the user wishes to 

access their online account, they enter the plaintext 

password and the plug-in regenerates the secure 

string originally produced [32]. This application was 

designed as a Mozilla Firefox extension and 

implements the salt repository as a Java servlet.  The 

interface is an XML-based RESTstyle protocol 

designed for use with XML HTTP Request objects 

(Javascript).  This allows for synchronous HTTPS 

requests that can translate XML responses into DOM 

documents.  The Agent element is written in 

Javascript and XML User Interface Language [32].  

  

5.2. Lucent Personalized Web Assistant 

(LPWA)  
  

This application addresses the use of the same 

credentials for several web accounts. User ID and 

password reuse can allow for enumeration across 

several websites and be dangerous if carried over for 

login at a user’s place of employment.  The 

application serves three main purposes; it generates 

pseudonymous aliases, filters privacy-sensitive 

HTTP header fields and provides indirection as the 

TCP connection between the client node and the 

website.  Traffic is passed through a proxy to prevent 

tracking of the originating computer. Ultimately the 

application operates as a HTTP proxy that provides 

anonymity services to users by creating aliases for 

usernames, email addresses and passwords.  The 

application does not support HTTPS, instead it must 

fully trust the proxy server [32]. The proxy remains 

stateless so it does not retain the information relating 

to the active browsing session from one request to 

the next.  Instead it introduces a proxy browser that 

tags each user request with a new user ID and 

session information.   

  

5.3. PwdHash  
  

This application creates a different secure 

password for each website [32].  Security is obtained 

by application of a salt string based on the domain 

name of the site to each plaintext password created 

followed by one-way hashing.  The application 

requires no server-side changes.  Instead it stores the 

salt values on the client-side and transmits the 

hashed and salted password product to the remote 

website.  Each hash output is tailored to meet the  

website password policy requirements [22].  Use 

of the domain name as salt does however cause the 

generated passwords to be vulnerable to dictionary 

attacks. The application functions by implementing 

password hashing natively in the Internet Explorer 

browser.  The extension listens for when the focus 

leaves the password field, it then replaces the content 

of the field with a salted and hashed value.  From 

this point on, anytime the user enters a plaintext 

password into the field, the password is replaced 

with a hashed version [22].  

  

5.4. Password Multiplier  
  

This application operates as a browser extension 

of Mozilla Firefox.  Mozilla’s cross-platform 

scripting tools and XUL are invoked to allow for 

integration.  To activate the application, the user 

authorizes the interface with a user-name and master 

password.  Following the initialization, the 

application is invoked every time the user double-

clicks on a password field.  Passwords are 

strengthened through hashing and the result is cached 

to disk (so it only needs to be performed once per 

user, per system).  To confirm the hashing, the user 

must re-enter the master password and domain name 

of the site [32].  This application requires no changes 

server-side [33] and supports both HTML form 

password inputs and standard HTTP authentication 

prompts [32].   It invokes the use of many iterations 

to slow attacks and does not incorporate salt to 

strengthen passwords [33].  

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 751



6.   Conclusion  
  

Authentication data, in its varying forms, is 

literally the key to vaults that contain the details of 

our lives.  Not only are we dependent on databases to 

store the information required for our day-to-day 

existence and prove our very identities; we rely on 

them to store the data that allows access to this 

information.  As demonstrated by the database 

breaches executed on a near daily basis, these stores 

are vulnerable to both online and offline attacks and 

therefore must be protected. Despite great 

advancement in the field of authentication, all data 

used in the authentication process is reliant upon 

databases for storage.  This is inclusive of 

passwords, biometric data and elements of two and 

multi-factor authentication.  Based on this premise, 

human kind will be reliant on secure storage within 

databases to protect their passwords and other types 

of authentication data for some time to come.  

 Password policy that enforces length, entropy 

and lifespan may provide safe guards against 

password guessing or brute-force attacks, but it 

cannot be relied upon as a defence against theft via a 

database breach.  Other security mechanisms must be 

implemented to protect authentication data while it is 

being stored. Much of industry’s authentication data 

is poorly stored in plaintext, due to the oversights of 

times gone by.  This data is extremely vulnerable, as 

a simple attack like a SQL injection, could result in 

the theft of any number of useable passwords, 

potentially enabling criminals to execute greater and 

more lucrative crimes. The IEEE and IETF standards 

may be considered ‘dated’, based on date alone; but 

the documents still provide recommendations that 

are industry best practise.  Currently, no other 

recommendations exist.  Furthermore, these 

recommendations are confirmed and further 

endorsed in documents by leading security 

authorities such as OWASP and NIST.  Although 

PCI-DSS documents do not stipulate how 

authentication data should be stored, they do state 

that it should be stored ‘securely’, offering no 

contradiction to the recommendations offered by the 

IEEE and IETF.  

 Best practice envelops an array of advisements 

ranging from password length and entropy, to 

concatenation of salt, one-way hashing and 

iterations.  Despite these recommendations, best 

practice for both password policy and storage is 

often implemented incorrectly or not at all.  This has 

resulted in vulnerable databases and vulnerable data.  

Methods that should be implemented to achieve best 

practice data are clearly outlined in the IEEE, IETF 

and NIST documents. Salt, one-way hashing, 

iterations and use of PBDKF2 should all be utilised 

with parameters that acknowledge the advancements 

in computer processing power.  FIP approved 

SHA256 one-way hashing is an ideal option for one-

way hashing as it is un-cracked and possess a length 

of 256 bits.  This supports the theory of increased 

entropy with increased length. Password manager 

applications have been developed that are intended 

strengthen passwords for various web accounts.  

Unfortunately, these applications are geared toward 

private individual users and do not provide for 

administrators who wish to apply corrective 

measures to existing authentication databases.  Any 

remedial implementations on back-end infrastructure 

will most likely be at large expense regarding both 

time and money.  For ‘The Internet of Things’ is to 

continue to develop, and eventually transform our 

lives, the issue of improper storage of authentication 

data must be addressed.    

 

7. References 
 

[1] Gartner (2016) Gartner Says Worldwide 

Information Security Spending Will Grow 7.9 

Percent to Reach $81.6 Billion in 2016. Gartner.com, 

August 9th 2016. https://www.gartner.com/ 

newsroom/id/3404817   

  

[2] NCA (2016) Cyber Crime Assessment 2016. 

NCA Strategic Cyber Industry Group, 

http://www.nationalcrimeagency.gov.uk/publications

/709 -cyber-crime-assessment-2016/file  

  

[3] Ferrara, A. (2012) Properly salting passwords, 

the case against pepper 

http://blog.ircmaxell.com/2012/04/properly-

saltingpasswords-case-against.html  

  

[4] Miller,S., Curran, K., Lunney, T. (2016) Traffic 

Classification for the Detection of Anonymous Web 

Proxy Routing. International Journal for Information 

Security Research, Vol. 5, No. 1, March 2016, pp: 

538 - 545, DOI: 

10.20533/ijisr.2042.4639.2015.0061, ISSN: 2042-

4639  

  

[5] IEEE (2008) IEEE Standard Specifications for 

Password-Based Public-Key Cryptographic 

Techniques. http://ieeexplore.ieee.org/document/ 

4773330/  

 

[6] OWASP. (2015) Password Storage Cheat sheet, 

OWASP, https://www.owasp.org/index.php/Pass- 

word_Storage_Ch eat_Sheet   

  

[7] Flores, D. (2014) An authentication and auditing 

architecture for enhancing security on eGovernment 

services. First International Conference on 

eDemocracy & eGovernment (ICEDEG), NY, USA, 

24-25 April 2014 DOI:10.1109/ICEDEG.2014.6819 

952. 

  

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 752



[8] Jain, A. (2005) Biometrics: Personal 

Identification in Networked Society (online), 

http://www.kennys.ie/biometrics-15.html  

  

[9] Tang, Y., Huang, D., Wang, Y. (2012) ID Proof 

on the Go: Development of a Mobile EEG-Based 

Biometric Authentication System, 21st International 

Conference on Pattern Recognition (ICPR), Tsukuba, 

Japan, pp: 45-54, 11-15 Nov 2012  

  

[10] Dubin, J. (2007) Complex password compliance 

requirements made simple (online), 

http://searchsecurity.techtarget.com/tip/Complexpass

word-compliance-requirements-made-simple   

  

[11] Ksiazak, P., Farrelly, W.  & Curran, K. (2015) 

“Lightweight Authentication Protocol for Secure 

Communications between Resource-Limited Devices 

and Wireless Sensor Networks.” International 

Journal of Information Security and Privacy, Vol. 8, 

No. 4, pp: 62102, October 2015, DOI: 

10.4018/IJISP.2014100104  

  

[12] Choi Y, Lee Y, Moon J, Won D (2017) Security 

enhanced multi-factor biometric authentication 

scheme using bio-hash function. PLoS ONE12(5): 

e0176250. https://doi.org/10.1371/journal.pone. 

0176250  

  

[13] Jensen, B. (2015) 5 Myths of Password Security  

(online),https://stormpath.com/blog/5-myths-

passwordsecurity/   

  

[14] Prince, M. (2012) The Four Critical Security 

Flaws that Resulted in Last Friday's Hack. 

Cloudflare, April 11 2016, 

https://blog.cloudflare.com/the-four-criticalsecurity-

flaws-that-resulte/  

  

[15] Rizzo, T. (2013) The Most Recent Password 

Security Compliance Guidelines http://insights. 

scorpionsoft.com/bid/329695/The-MostRecent-

Password-Security-Compliance-Guidelines   

  

[16] NIST (2016) NIST’S POLICY ON HASH 

FUNCTIONS, National Institute of Standards and 

Technology, available: http://csrc.nist.gov/groups/ 

ST/hash/policy.html  

  

[17] Strom, D. (2014) Introduction to multifactor 

authentication methods in the enterprise. Search 

Security, July 2014. http://searchsecurity.techtarget. 

com/feature/Thefundamentals-of-MFA-Multifactor-

authentication-in-theenterprise    

  

[18] Abhishek, K., Roshan, S., Prabhat and, K., 

Rajeev, R. (2012) A Comprehensive Study on 

Multifactor Authentication Schemes. Proceedings of 

the Second International Conference on Advances in 

Computing and Information Technology (ACITY) 

July 13-15, 2012, Chennai, India,  pp: 561--568  

  

[19] Schneier, B. (2013) A Really Good Article on 

How Easy it is to Crack Passwords. Schneier Blog,  

July 2013, https://www.schneier.com/blog/ 

archives/2013/06/a_really _good_a.html  

  

[20] XKCD.com. (2013) Password Strength (online), 

http://xkcd.com/936/   

  

[21] Toponce, A. (2011) Strong Passwords NEED 

Entropy, ptree.org, 3rd july 2011 

https://pthree.org/2011/03/07/ strong-passwords-

need-entropy/  

  

[22] Pornin, T. (2013) Where did common minimum 

password length guidelines originate (online), 

http://security.stackexchange.com/questions/47098/

where-did-common-minimum-password-length-

guidelinesoriginate   

  

[23] Ross, B. et al. (2005) Stronger Password 

Authentication Using Browser Extensions. 

Proceedings of the 14th conference on USENIX 

Security Symposium, Volume 14, Baltimore, MD. 

July 31 - August 2005 pp: 22-32  

  

[24] Spafford, G. (2006) Security Myths & 

Passwords. Cerias Blog, August 2006 

http://www.cerias.purdue.edu/site/blog/post/passwor

dchange-myths/  

  

[25] Halamka, J. (2012) A Really Good Article on 

How Easy it Is to Crack Passwords (online), 

http://geekdoctor.blogspot.ie/2012/12/the-questfor-

perfect-password.html  

  

[26] Barker, E. (2016) NIST Special Publication 

800-57 Part 1 Revision 4 - Recommendation for Key 

Management, NIST, 

http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4  

  

[27] IETF. (2000) PKCS #5: Password-Based 

Cryptography Specification Version 2.0, 

https://tools.ietf.org/html/rfc2898   

  

[28] OWASP. (2010) Hashing Java. OSWAP, 

https://www.owasp.org/index.php/Hashing_Java  

  

[29] Thavalengal, S., Andorko, I., Drimbarean, A., 

Bigioi, P. & Corcoran, P. (2015) Proof-of-concept 

and evaluation of a dual function visible/NIR camera 

for iris authentication in smartphones. IEEE 

Transactions on Consumer Electronics, Vol: 61, 

Issue: 2, May 2015, DOI: 

10.1109/TCE.2015.7150566  

  

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 753



[30] Ristic, I. (2014) SHA-1 Depreciation: What you 

need to know (online), https://community.qualys. 

com/blogs/securitylabs/2014/09/09/sha1-depreca- 

tion-what-you-need-to-know   

  

[31] Beattie, D. (2014) Everything you need to know 

about the move to SHA-1 (online), 

https://www.globalsign.com/en/blog/everything-

youneed-to-know-about-the-move-to-sha-256/  

  

[32] Strahs, B., Yue, C., Wang, H. (2009) Secure 

Passwords Through Enhanced Hashing.  Proceedings 

of the 23rd conference on Large installation system 

administration, LISA'09, Baltimore, USA, Nov 1-6th 

2009, pp: 7-14. 

  

[33] Halderman, J., Waters, B., Felten, E.  (2005) A 

Convenient Method for Securely Managing 

Passwords, Proceedings of the 14th international 

conference on World Wide Web (WWW 2005), 

Chiba, Japan, May 1014 2005. 

 

International Journal for Information Security Research (IJISR), Volume 7, Issue 2, June 2017

Copyright © 2017, Infonomics Society 754




