
Practical Fully Homomorphic Encryption for
Integers over Polynomial Quotient Rings

Abstract—In this article we describe a simplified version of
Polly Cracker-style fully homomorphic encryption scheme. The
main feature of our scheme is an ability to define a strict
upper bound of ciphertext size when performing calculations
on it for both addition and multiplication. Combined with
homomorphic properties of Polly Cracker it’s able to reach
high calculation performance without degrading in time. Another
important aspect is utilization of large finite rings for calculations
in untrusted environment, which prevents most of known attacks
on Polly Cracker family.

Index Terms—fully homomorphic cryptography, finite integer
rings, polynomials, polly cracker.

I. INTRODUCTION

In our days, development of practically efficient fully ho-
momorphic encryption (FHE) schemes is the one of the most
important problems in cryptography. An encryption scheme is
called fully homomorphic if it’s able to evaluate an arbitrary
function 𝑓(𝑥1, . . . , 𝑥𝑛) over ciphertexts. In this case decrypted
value must match to a calculation result of the same function
𝑓 over plaintexts.

Wide spread of cloud computing is a serious driving factor
for development of such kind of ciphers to protect confidential
data in an untrusted environment. There are two general
scenarios which pose slightly different requirements for en-
cryption.

The first is protection of information stored in cloud
databases. Traditional encryption doesn’t fit really well for this
case, because it doesn’t allow to perform any computations
(i.e. statistical) on data directly in the cloud. For this case we
need an FHE resistant to known plaintext attacks additionally
with relatively small ciphertext size. At the same time, we
usually don’t perform complex calculations on data inside
database, so we can lower requirements for computation
performance.

Second scenario is outsourcing heavy computations (i.e.
physical modeling, video rendering and so on) to a cloud.
To make this cost effective we must require high computation
performance over encrypted data, but we may lower security
requirements for certain scenarios such as chosen plain-text or
ciphertext attack.

This research was performed in Novosibirsk State University under sup-
port of the Ministry of education and science of Russia (contract no.
02.G25.31.0054).

Initial breakthrough in this domain was a research done by
Craig Gentry for his PhD [1] in 2009. He proved theoretical
possibility of such encryption though his original scheme was
absolutely impractical due to heavy requirements on memory
and computational resources. His work had a significant im-
pact on cryptographic community and in following years many
derived encryption schemes were presented to improve it’s
performance. Unfortunately, all currently known encryption
schemes based on Gentry’s ideas are still not efficient enough
to be incorporated into a real world applications and databases.

In this paper we consider an encryption scheme, which may
be useful in both described scenarios and is based on Polly
Cracker ideas, allowing to reach high calculation performance.

II. PRIOR WORKS AND OUR CONTRIBUTION

In early 1990s several works were presented, which intro-
duced family of public-key cryptosystems currently known
as Polly Cracker. Fellows and Koblitz proposed a public-key
encryption based on a secret ideal in polynomial ring [2]. In
this work a set of multivariate polynomials 𝑓1, . . . , 𝑓𝑚−1 ∈
𝐹 [𝑥1, . . . 𝑥𝑛] over a field 𝐹 represent an ideal ℐ and are
considered as a public key. These polynomials must have a
common root 𝑥*, which is a private key. Ciphertext for a
message 𝑚 ∈ 𝑃/ℐ is computed as follows:

𝑐 =
∑︁
𝑖

ℎ𝑖𝑓𝑖 +𝑚.

To decrypt is it’s enough to evaluate 𝑐 at the secret root.
About the same time B. Barkee et al. published a paper

[3] presenting a cryptosystem based on similar ideas. In their
scheme, private key consists of Gröbner basis 𝐺 defining
an ideal ℐ in polynomial ring. Public key included a set of
arbitrary samples 𝑓1, . . . , 𝑓𝑚−1 ∈ ℐ.

In the same paper they demonstrated weakness on such kind
of encryption to attacks employing Buchberger’s algorithm [4]
to recover Gröbner basis. They posed a long-standing question,
if it’s possible to use Gröbner basis for cryptographic purposes.

These works were followed by several attempts to invent
a secure Polly Cracker-style cryptosystem, but almost all of
them were broken by now. A very good survey of these
schemes and their weaknesses is presented in [5].

1Alexander Zhirov, 1Olga Zhirova, 2Sergey F. Krendelev
1Department of Information Technology Novosibirsk State University Novosibirsk, Russia
2Lab of Modern Computer Technilogies Novosibirsk State University Novosibirsk, Russia

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 469

In 2011 Albrecht et al. published a paper [6] where homo-
morphic properties of Barkee’s scheme [3] and it’s IND-BCPA
security were discussed. They considered two modifications:
noiseless FHE and noisy somewhat homomorphic encryption
(SHE), conceptually similar Gentry’s SHE. They prove that
noiseless scheme reaches only bounded m-IND-CPA security,
which means that it might be broken if an adversary is able to
encrypt 𝑚(𝜆) plaintexts, where 𝜆 is a security parameter and
𝑚 — a polynomial function.

In this paper we present modification of noiseless FHE
[6] which resists Gröbner basis recovery attacks. We turn
ciphertext domain into polynomial quotient ring, which allows
to define strict upper bound of ciphertext size independently of
evaluated circuit depth. This makes our cryptosystem practi-
cally applicable to secure computations in, for example, cloud
databases.

Additionally, we introduce notion of public and private
rings. A private ring is an integer quotient ring by prime
modulus. A public ring contains the private as a subring and
is an integer quotient ring by composite modulus. Given only
with public ring adversary can’t apply Buchberger’s algorithm
to recover a secret key.

The rest of the paper is organized as follows. In section III
we establish notation, describe our cryptosystem and provide
initialization, encryption, decryption and calculation algo-
rithms. Then, in section IV we consider it from mathematical
standpoint and prove it’s correctness and homomorphic prop-
erties. Next, in section V we provide a brief security review.
In section VI we discuss a modification of our scheme with
even better level of security at the cost of worse calculation
performance. We also discuss implementation-related issues
in VII practical aspects of the scheme in section VIII. Then
we present benchmarking results in IX. Finally, in section X
we discuss main achieved results and possible development
directions for future research.

III. ENCRYPTION SCHEME CONSTRUCTION

In the rest of the paper we will use following notations:
∙ Z𝑛 — integer ring modulo 𝑛.
∙ Z𝑛[𝑥] — univariate polynomial ring over Z𝑛.
∙ 𝑃𝑛,𝑑 ⊂ Z𝑛[𝑥] — a subset of Z𝑛[𝑥] containing all

polynomials of degree less or equal to 𝑑.
∙ 𝐼𝑛,𝑑 ⊂ 𝑃𝑛,𝑑 — a subset of 𝑃𝑛𝑚,𝑑 containing only

irreducible monic polynomials.
∙ ℐ𝑤 — an ideal in Z𝑛[𝑥] generated by a polynomial 𝑤(𝑥).
∙ Z𝑛[𝑥]/ℐ𝑤 — quotient ring modulo ideal ℐ𝑤.
∙ P𝑏 — a set of prime numbers with a length of binary

representation 𝑏.
∙ 𝑥←$ 𝑋 — sampling a random element 𝑥 from a set 𝑋

with uniform distribution.
∙ LC(𝑐(𝑥)) — coefficient of a highest non-zero term of a

polynomial 𝑐(𝑥).
As a server we will denote an untrusted party, which is

given with ciphertexts and public cryptosystem properties to
perform encrypted computations over them.

An integer quotient ring which holds plaintext is called
private. An integer quotient ring which holds coefficients of
ciphertext polynomials is called public.

A. The encryption concept overview

Hereinafter we assume that 𝜆 is a general cryptosystem
security parameter and all other parameters implicitly depend
on it. We fix two of them: 𝑑 = 𝑑(𝜆) ∈ Z defines secret
polynomial degree and 𝑏 = 𝑏(𝜆) ∈ Z specifies private ring
modulus binary length. Let’s establish a secret key:

𝑢(𝑥)←$ 𝑃𝑛,𝑑

𝑛←$ P𝑏.
𝑚←$ P𝑏.

To encrypt an integer number 𝛼 ∈ Z𝑛, where 𝑛 ∈ P𝑏,
we need to generate random 𝑠1(𝑥) ∈ 𝑃𝑛,𝑑, 𝑠2(𝑥) ∈ 𝑃𝑚,𝑑,
𝛽 ∈ Z𝑚. Then we compute two ciphertexts:

𝑐1(𝑥) = (𝑠1(𝑥)𝑢(𝑥) + 𝛼) ∈ Z𝑛[𝑥]

𝑐2(𝑥) = (𝑠2(𝑥)𝑢(𝑥) + 𝛽) ∈ Z𝑚[𝑥].

𝑐1(𝑥) is a “real” ciphertext and 𝑐2(𝑥) a “fake”. By Chinese
Remainder Theorem we can construct a polynomial 𝑐(𝑥) ∈
Z𝑛𝑚[𝑥] such that 𝑐(𝑥) = 𝑐1(𝑥) mod 𝑛 = 𝑐2(𝑥) mod 𝑚.
This also implies two following statements:

(𝑐(𝑥)− 𝛼) ̸≡ 𝑢(𝑥)𝑠′(𝑥) mod 𝑛𝑚 (1)
[𝑐(𝑥) mod 𝑢(𝑥)] ̸≡ 𝛼 mod 𝑛𝑚 (2)

Being mathematically trivial, (1) illustrates, that secret poly-
nomial 𝑢(𝑥) can’t be recovered by finding GCD of two
ciphertexts of zero, and (2) implies, that knowing 𝑢(𝑥) doesn’t
decrypt original plaintext over Z𝑛𝑚. More detailed security
analysis will be provided in section V.

In practice we don’t care about particular value of 𝛽, so we
can simplify encryption procedure and build 𝑐(𝑥) by following
formula:

𝑐(𝑥) = 𝑠(𝑥)𝑢(𝑥) + 𝑛 · 𝑟(𝑥) + 𝛼.

When 𝑟(𝑥) ̸≡ 0 statements (1) and (2) will remain true for
𝑐(𝑥).

B. Cryptosystem initialization

Before initializing cryptosystem we must specify parameters
𝑑 = d(𝜆) and 𝑏 = b(𝜆). 𝑑 defines degree of secret polynomial
and 𝑏 is number of bits in binary representation of numbers
𝑛 and 𝑚. The larger values are chosen, the higher level of
security is reached.

We select two prime numbers 𝑛, 𝑚 of length 𝑏, which define
private ring Z𝑛 and public ring Z𝑛𝑚. Since we need to hide
private ring from an adversary we pass to a server product 𝑛𝑚
only. Thus 𝑛 becomes a part of secret key.

We sample a random monic irreducible polynomial 𝑢(𝑥) ∈
𝐼𝑛,𝑑 of degree 𝑑, which becomes a second part of secret key.
We also construct 𝑤(𝑥) ∈ Z𝑛𝑚[𝑥] to be

𝑤(𝑥) = 𝑢(𝑥) · 𝑣(𝑥) mod 𝑛,

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 470

Input: 𝑏 — size of prime modulus 𝑛 in bits, 𝑑 — degree of
secret polynomial 𝑢(𝑥).

Output: ⟨𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦⟩ — initialized cryptosystem.

function CS INIT(𝑏, 𝑑)
𝑛 ←$ P𝑏

𝑚 ←$ P𝑏

𝑢(𝑥) ←$ 𝐼𝑛,𝑑
𝑣(𝑥) ←$ 𝐼𝑛,𝑑+1

𝑤(𝑥) ←$ 𝑃𝑛𝑚,2𝑑

𝑤(𝑥) ← 𝑢(𝑥) · 𝑣(𝑥) + 𝑤(𝑥) · 𝑛
𝑃𝑝𝑢𝑏 ← ⟨𝑛 ·𝑚,𝑤(𝑥)⟩
𝑃𝑘𝑒𝑦 ← ⟨𝑛, 𝑢(𝑥), 𝑑⟩
return ⟨𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦⟩

end function

Figure 1. Cryptosystem initialization algorithm

having 𝑣(𝑥) ∈ 𝐼𝑛,𝑑+1.
At this point we can define cryptosystem public properties

𝑃𝑝𝑢𝑏 and a secret key 𝑃𝑘𝑒𝑦:

𝑃𝑝𝑢𝑏 =⟨𝑛𝑚,𝑤(𝑥)⟩
𝑃𝑘𝑒𝑦 =⟨𝑛, 𝑢(𝑥)⟩

Algorithm 1 provides formalized description of cryptosys-
tem initialization process.

C. Encryption and decryption

Let 𝛼 ∈ Z𝑛 be a plaintext. Then we map it to a ciphertext
polynomial 𝑐(𝑥) ∈ Z𝑛𝑚[𝑥] computed by following formula:

𝑐(𝑥) = 𝑠(𝑥) · 𝑢(𝑥) + 𝑛 · 𝑟(𝑥) + 𝛼 mod 𝑛𝑚. (3)

Here 𝑠(𝑥) is randomly sampled from 𝐼𝑛𝑚,𝑑 and 𝑟(𝑥) ∈
Z𝑛𝑚[𝑥] is a random non-zero polynomial of degree 2𝑑−1. It’s
important to use different 𝑠(𝑥) for each encryption to obtain
properties of probabilistic encryption. This is also critical for
encryption security level.

Decryption is as easy as computing remainder of division
of 𝑐(𝑥) by 𝑛 and then 𝑢(𝑥):

𝛼 = [(𝑐(𝑥) mod 𝑛) mod 𝑢(𝑥)]

Since 𝑢(𝑥) is monic and 1 is reversible in any ring Z𝑛, 𝛼 is
determined unambiguously.

Algorithms 2 and 3 provide formal description for this
procedures.

D. Calculation over ciphertexts

The encryption scheme supports homomorphic addition and
multiplication over ciphertexts.

Polynomials produced by the algorithm 2 may be considered
as elements of quotient ring Z𝑛𝑚[𝑥]/ℐ𝑤. Thus addition and
multiplication of ciphertexts must be performed according to
rules of multiplication and addition of polynomials in such
ring. Due to nature of the quotient ring degree of minimal
class member is below deg(𝑤(𝑥)). This implies upper limit
of ciphertext size.

Input: ⟨𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦⟩ — initialized cryptosystem, 𝛼 — plain-
text.

Output: 𝑐(𝑥) — ciphertext.

function CS ENCRYPT(𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦, 𝛼)
𝑠(𝑥) ←$ 𝐼𝑛,𝑑
𝑟(𝑥) ←$ 𝑃𝑛𝑚,𝑑

𝑐(𝑥) ← 𝑠(𝑥) · 𝑢(𝑥) + 𝑛 · 𝑟(𝑥) + 𝛼 mod 𝑛𝑚
return 𝑐(𝑥)

end function

Figure 2. Encryption algorithm

Input: ⟨𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦⟩ — initialized cryptosystem, 𝑐(𝑥) — ci-
phertext.

Output: 𝛼 — plaintext.

function CS DECRYPT(𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦, 𝑐(𝑥))
𝑐′(𝑥) ← 𝑐(𝑥) mod 𝑛
𝑝(𝑥) ← 𝑐′(𝑥) mod 𝑢(𝑥)
if deg(𝑝(𝑥)) ̸= 0 then

return Error: invalid ciphertext.
end if
𝛼 ← 𝑝(𝑥) mod 𝑥.
return 𝛼.

end function

Figure 3. Decryption algorithm

Informally this may be treated as follows. Polynomials of
a form 𝑎𝑥𝑙 · 𝑤(𝑥) are ciphertexts of zero in terms of our
encryption. Assume that we’ve got ciphertext 𝑐(𝑥) as a result
of some calculations. Let 𝑑′ = deg(𝑐(𝑥)) be greater than
deg(𝑤(𝑥)) = 2𝑑 + 1. Due to homomorphic properties of our
cryptosystem ciphertext

𝑐′(𝑥) = 𝑐(𝑥)− LC(𝑐(𝑥))𝑥𝑑
′−(2𝑑+1)𝑤(𝑥)

is an encryption of the same number as 𝑐(𝑥). By construction,
deg(𝑐′(𝑥)) < deg(𝑐(𝑥)). Repeating this operation we can
reduce degree of 𝑐(𝑥) at least to 2𝑑 while preserving decryp-
tion correctness. Described procedure is essentially equivalent
to finding remainder of division of 𝑐(𝑥) by 𝑤(𝑥), thus it’s
equivalent to operations over the ring Z𝑛𝑚[𝑥]/ℐ𝑤.

Formal correctness of this view and homomorphic encryp-
tion properties are proved in section IV.

IV. ENCRYPTION CORRECTNESS

Correctness of FHE scheme must be proved in two mean-
ings. First, it must be able to encrypt any plaintext with any
valid secret key and then correctly decrypt it. Second, for each
claimed homomorphic operation ∘ and ciphertexts 𝑐1(𝑥), 𝑐2(𝑥)
for numbers 𝛼, 𝛽 respectively decryption of 𝑐1(𝑥)∘𝑐2(𝑥) must
match to 𝛼 ∘ 𝛽.

Lemma 1. Given polynomials 𝑢(𝑥) ∈ 𝐼𝑛,𝑑 and 𝑛 · 𝑟(𝑥) ∈
𝑃𝑛𝑚,2𝑑, following statements are true:

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 471

1) there exist polynomials 𝑘(𝑥) ∈ 𝑃𝑛𝑚,𝑑, 𝑙(𝑥) ∈ 𝑃𝑛𝑚,𝑑−1

such that 𝑛 · 𝑟(𝑥) = 𝑘(𝑥)𝑢(𝑥) + 𝑛𝑙(𝑥);
2) 𝑘(𝑥), 𝑙(𝑥) are unique.

Proof: Given an arbitrary 𝑟(𝑥) and monic 𝑢(𝑥), Euclidean
division algorithm unique quotient and remainder:

𝑟(𝑥) = 𝑘′(𝑥)𝑢(𝑥) + 𝑙(𝑥)

deg[𝑙′(𝑥)] < deg[𝑢(𝑥)]

⇒ 𝑛 · 𝑟(𝑥) = [𝑛 · 𝑘′(𝑥)]𝑢(𝑥) + 𝑛𝑙(𝑥) =

= 𝑘(𝑥)𝑢(𝑥) + 𝑛𝑙(𝑥)

Thus, 𝑘(𝑥) and 𝑙(𝑥) exist and unique for any given 𝑢(𝑥)
and 𝑛 · 𝑟(𝑥).

Theorem 1. Let 𝑑 > 0 be an integer, 𝑢(𝑥) ∈ 𝐼𝑛,𝑑, 𝑣(𝑥) ∈
𝐼𝑛,𝑑+1, 𝑤′(𝑥) ∈ 𝑃𝑛𝑚,2𝑑, 𝑤(𝑥) = 𝑢(𝑥)𝑣(𝑥) + 𝑛 · 𝑤′(𝑥).

Consider

𝑅 = {𝑐(𝑥) ∈ Z𝑛𝑚[𝑥]/ℐ𝑤 |
𝑐(𝑥) = 𝑠(𝑥)𝑢(𝑥) + 𝑛 · 𝑟(𝑥) + 𝛼},

where:

1) 𝑠(𝑥) ∈ 𝑃𝑛𝑚,𝑑 is an arbitrary monic polynomial,
2) 𝑟(𝑥) ∈ 𝑃𝑛𝑚,2𝑑,
3) 𝛼 ∈ Z𝑛𝑚.

Then 𝑅 defines a subring in Z𝑛𝑚[𝑥]/ℐ𝑤.

Proof: Let

𝑅′ = {𝑐(𝑥) ∈ Z𝑛𝑚[𝑥] | 𝑐(𝑥) = 𝑠(𝑥)𝑢(𝑥) + 𝑛 · 𝑟(𝑥) + 𝛼}

be a subset of Z𝑛𝑚[𝑥] body, where:
1) 𝑠(𝑥) ∈ Z𝑛𝑚[𝑥] is an arbitrary monic polynomial,
2) 𝑟(𝑥) ∈ 𝑃𝑛𝑚,2𝑑,
3) 𝛼 ∈ Z𝑛𝑚.
Let’s prove that 𝑅′ defines subring in Z𝑛𝑚[𝑥]. Obviously,

𝑅′ contains both 0 and 1:

1 = 0 · 𝑢(𝑥) + 𝑛 · 0 + 1 ∈ 𝑅′ (4)
1 = 0 · 𝑢(𝑥) + 𝑛 · 0 + 0 ∈ 𝑅′ (5)

Consider two samples 𝑐𝛼(𝑥), 𝑐𝛽(𝑥) ∈ 𝑅′ :

𝑐𝛼(𝑥) = 𝑠𝛼(𝑥)𝑢(𝑥) + 𝑛𝑟𝛼(𝑥) + 𝛼

𝑐𝛽(𝑥) = 𝑠𝛽(𝑥)𝑢(𝑥) + 𝑛𝑟𝛽(𝑥) + 𝛽

𝑅′ is closed under addition:

𝑐𝛼+𝛽(𝑥) = 𝑐𝛼(𝑥) + 𝑐𝛽(𝑥) =

= [𝑠𝛼(𝑥) + 𝑠𝛽(𝑥)] · 𝑢(𝑥) + 𝑛[𝑟𝛼(𝑥) + 𝑟𝛽(𝑥)]+

+ [𝛼+ 𝛽] ∈ 𝑅′ (6)

Note that given 𝑐𝑖(𝑥) ∈ 𝑅′ might have several representa-
tion that satisfy conditions on 𝑅′. Though there always exists
unique representation of 𝑐𝑖(𝑥) having deg[𝑟𝑖(𝑥)] < deg[𝑢(𝑥)]
due to lemma 1. We will refer it as normalized form.

Now consider product

𝑐𝛼𝛽(𝑥) = 𝑐𝛼(𝑥) · 𝑐𝛽(𝑥) =
=[𝑠𝛼(𝑥)𝑢(𝑥) + 𝑛𝑟𝛼(𝑥) + 𝛼] · [𝑠𝛽(𝑥)𝑢(𝑥) + 𝑛𝑟𝛽(𝑥) + 𝛽] =

=[𝑠𝛼(𝑥)𝑠𝛽(𝑥)𝑢(𝑥) + 𝑛𝑠𝛼(𝑥)𝑟𝛽(𝑥) + 𝑛𝑠𝛽(𝑥)𝑟𝛼(𝑥)+

+ 𝑠𝛼(𝑥)𝛽 + 𝑠𝛽(𝑥)𝛼] · 𝑢(𝑥) + 𝑛[𝑟𝛼(𝑥)𝛽 + 𝑟𝛽(𝑥)𝛼] + 𝛼𝛽+

+ 𝑛2𝑟𝛼(𝑥)𝑟𝛽(𝑥) =

=𝑠′𝛼𝛽(𝑥)𝑢(𝑥) + 𝑛𝑟′𝛼𝛽(𝑥)𝛼𝛽 + 𝑛2𝑟𝛼(𝑥)𝑟𝛽(𝑥)⏟ ⏞
lem. 1
= 𝑠′′𝛼𝛽(𝑥)𝑢(𝑥)+𝑛·𝑟′′𝛼𝛽(𝑥)

=

=[𝑠′𝛼𝛽(𝑥) + 𝑠′′𝛼𝛽(𝑥)]𝑢(𝑥) + 𝑛[𝑟′𝛼𝛽(𝑥) + 𝑟′′𝛼𝛽(𝑥)] + 𝛼𝛽 (7)

By lemma 1, (7) satisfies requirements for being normalized
form of 𝑐𝛼·𝛽(𝑥), thus 𝑐𝛼·𝛽(𝑥) ∈ 𝑅′. Statements (4), (5), (6),
(7) show that 𝑅′ passes subring test, thus 𝑅′ is subring in
Z𝑛𝑚[𝑥].

Now consider natural ring homomorphism 𝜔 : Z𝑛𝑚[𝑥] →
Z𝑛𝑚[𝑥]/ℐ𝑤. Since 𝑅 = 𝜔(𝑅′) and 𝑅′ is a subring in Z𝑛𝑚[𝑥],
thus 𝑅 is a subring in Z𝑛𝑚[𝑥]/ℐ𝑤 by the First isomorphism
theorem.

Theorem 2. Using the notion of theorem 1, following state-
ments are true:

1) Mapping 𝒟 : 𝑅→ Z𝑛

𝒟(𝑐(𝑥)) = [(𝑐(𝑥) mod 𝑢(𝑥)) mod 𝑛]

is a ring epimorphism (surjective homomorphism).
2) there exists injective mapping ℰ : Z𝑛 → 𝑅 such that for

any 𝛼 ∈ Z𝑛 following equation is correct:

𝛼 = 𝒟(ℰ(𝛼))

Proof: 𝒟 can be represented as a composition of two
mappings defined by natural homomorphisms:

𝜑 : 𝑅→ 𝑅/ℐ𝑢
𝜓 : 𝑅/ℐ𝑢 → 𝑅/⟨𝑛⟩.

Here as 𝑅/⟨𝑛⟩ we denote a quotient ring generated by ideal
⟨𝑛⟩, where 𝑛 is considered as polynomial of zero degree.
By definition, 𝑅/⟨𝑛⟩ ⊆ Z𝑛. As composition of two homo-
morphisms is a homomorphism and 𝒟 ≡ 𝜓 ∘ 𝜑, thus 𝒟 is
homomorphism from 𝑅 to Z𝑛.

Let’s prove that 𝒟 is an epimorphism. For any 𝛼 ∈ Z𝑛 there
exists 𝑐(𝑥) ∈ 𝑅 which normalized form is equals to:

𝑐(𝑥) = 𝑠(𝑥)𝑢(𝑥) + 𝑛𝑟(𝑥) + 𝛼.

By definition of 𝒟, 𝒟(𝑐(𝑥)) = 𝛼. Thus 𝒟 is an epimorphism.
By construction, any mapping ℰ(𝛼) = 𝑠(𝑥)𝑢(𝑥)+𝑛𝑟(𝑥)+𝛼

for given 𝑢(𝑥) and 𝑛 and arbitrary 𝑠(𝑥) and 𝑟(𝑥) satisfies
requirement 𝛼 = 𝒟(ℰ(𝛼)) and any 𝛼 ∈ Z𝑛.

From this theorems two corollaries follow, which directly
prove encryption correctness.

Corollary 1 (On correctness of encryption and decryption).
Let ℰ𝑃𝑘𝑒𝑦

and 𝒟𝑃𝑘𝑒𝑦
be the mappings defined by algorithms

2 and 3 respectively. Then following statements are true:

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 472

1) For any pair of plaintext and secret key ⟨𝛼, 𝑃𝑘𝑒𝑦⟩ there
exists an appropriate ciphertext 𝑐(𝑥):

𝑐(𝑥) = ℰ𝑃𝑘𝑒𝑦
(𝛼)

2) For any pair of ciphertext and secret key ⟨𝑐(𝑥), 𝑃𝑘𝑒𝑦⟩
there exists one and only one matching plaintext 𝛼 =
𝒟𝑃𝑘𝑒𝑦

(𝑐(𝑥)) such that

𝑐(𝑥) = ℰ𝑃𝑘𝑒𝑦
(𝛼)

Proof: By construction ℰ𝑃𝑘𝑒𝑦
≡ ℰ and 𝒟𝑃𝑘𝑒𝑦

≡ 𝒟, where
mappings ℰ and 𝒟 are from theorem 2. Considering this, the
corollary immediately follows from theorem 2.

Corollary 2 (On correctness of computations over cipher-
texts). Assume that addition and multiplication of ciphertexts
are performed according to rules of polynomial addition and
multiplication in a ring Z𝑛𝑚[𝑥]/ℐ𝑤. Then for any cryptosys-
tem defined by ⟨𝑃𝑝𝑢𝑏, 𝑃𝑘𝑒𝑦⟩ and any plaintexts 𝛼, 𝛽 ∈ Z𝑛

following statements are correct:

𝛼+ 𝛽 = 𝒟𝑃𝑘𝑒𝑦
[ℰ𝑃𝑘𝑒𝑦

(𝛼) + ℰ𝑃𝑘𝑒𝑦
(𝛽)] (8)

𝛼 · 𝛽 = 𝒟𝑃𝑘𝑒𝑦
[ℰ𝑃𝑘𝑒𝑦

(𝛼) · ℰ𝑃𝑘𝑒𝑦
(𝛽)] (9)

Proof: By construction ℰ𝑃𝑘𝑒𝑦
≡ ℰ and 𝒟𝑃𝑘𝑒𝑦

≡ 𝒟,
where mappings ℰ and 𝒟 are from theorem 2. Theorem 1
guarantees that decryption algorithm will be able to handle
correctly ciphertexts after addition or multiplication. In turn,
homomorphic properties proven in theorem 2 imply correct-
ness of statements (8) and (9).

Based on corollaries 1 and 2 we can state that provided
algorithms might be used for encryption, yet it’s security still
must be evaluated. We do it in the next section.

V. ENCRYPTION SECURITY EVALUATION

A. Preliminaries

In this section we will consider the cryptosystem security
against most typical attacks. As it was mentioned in intro-
duction this encryption might be considered as a member
of Polly Cracker family, in particular as a modification of
noiseless encryption described in [6]. Since Polly Cracker-
style schemes are believed to be generally insecure, we must
also evaluate resistance of our encryption against most typical
attacks proposed for this cryptosystem family.

Hereinafter we will assume that during cryptosystem con-
struction prime numbers 𝑛 and 𝑚 were chosen large enough
to make factoring a product of them unacceptable for an
adversary due to high costs. By the time of writing it is
sufficient to have log2(𝑛) = log2(𝑚) = 1024 to make
factoring merely impossible.

B. Ciphertext-only attack

First of all, we must consider a case when an adversary
has access only to a set of ciphertexts 𝑐1(𝑥), . . . , 𝑐𝑘(𝑥) and
cryptosystem public parameters 𝑃𝑝𝑢𝑏 = ⟨𝑁,𝑤(𝑥)⟩. The most

straightforward attack involves solving system of non-linear
equations over Z𝑛𝑚 for the unknown 𝑢(𝑥):

𝑐1(𝑥) = 𝑠1(𝑥) · 𝑢(𝑥) + 𝑛𝑟1(𝑥) + 𝛼1

. . .

𝑐𝑘(𝑥) = 𝑠𝑘(𝑥) · 𝑢(𝑥) + 𝑛𝑟𝑘(𝑥) + 𝛼𝑘

𝑤(𝑥) = 𝑣(𝑥) · 𝑢(𝑥) + 𝑛𝑟′(𝑥)

𝑁 = 𝑛 ·𝑚

where 𝑢(𝑥), 𝑠𝑖(𝑥), 𝑟𝑖(𝑥), 𝑟
′(𝑥), 𝛼𝑖, 𝑛,𝑚 are unknown ∀𝑖 =

1, . . . , 𝑘.
Typically such equation systems are solved in three steps:

ring Z𝑛𝑚 is decomposed into a direct product of prime fields
Z𝑛 × Z𝑚, equations are solved over each of prime fields and
by the Chinese Remainder Theorem solution over Z𝑛𝑚 is
reconstructed. However, this method won’t work for our case,
because we assume factoring 𝑛𝑚 to decompose ring Z𝑛𝑚 to
be a hard problem. On the other hand, solving polynomial
equations of an arbitrary degree right over the ring is as
hard as integer factorization, as proved for Rabin’s public key
cryptosystem [7].

Another approach is brute-force attack on 𝑢(𝑥). Given with
a polynomial 𝑢′(𝑥) attacker can perform following test:

𝑟𝑖0 + 𝑟𝑖1𝑥+ . . .+ 𝑟𝑖𝑑−1𝑥
𝑑−1 = 𝑐𝑖(𝑥) mod 𝑢′(𝑥)

∀𝑖 = 1, . . . , 𝑘 : 𝐺𝐶𝐷(𝑟𝑖1, . . . , 𝑟
𝑖
𝑑−1)

?
̸= 1 (10)

If inequality (10) is satisfied, then given 𝑢′(𝑥) is either secret
𝑢(𝑥) itself or random multiplier 𝑠(𝑥) used for encrypting this
particular ciphertext. Probability of false positive is not higher
than probability of using the same random 𝑠(𝑥) for encrypting
all given ciphertext, which is negligible for any 𝑘 > 1.

Nevertheless, complexity of this kind of attack is estimated
as 𝑂(2⌈log2(𝑛)⌉·𝑑/𝑑), where 𝑑 = deg[𝑢(𝑥)], because about a
fraction of 1/𝑑 of polynomials of degree 𝑑 is irreducible over
finite field [8, p. 142]. It means, that brute-force complexity is
harder, than factoring 𝑛𝑚, which is assumed to be infeasible.

It seems to be more practical to investigate polynomial 𝑤(𝑥)
which is part of 𝑃𝑝𝑢𝑏. As it was mentioned it is effectively
a ciphertext of zero, so known plaintext attack might be
performed. This scenario is considered in section V-C.

C. Known plaintext attack

In this case an adversary has access to a set of
pairs of ciphertexts and corresponding plaintexts:
⟨𝛼1, 𝑐

′
1(𝑥)⟩, . . . , ⟨𝛼𝑙, 𝑐

′
𝑙(𝑥)⟩. We note that due to homomorphic

encryption properties he might construct ciphertext for any
desired plaintext. This essentially implies that, for any
homomorphic encryption which allows addition operation,
CPA and KPA attacks are equivalent and attacker is limited
only in number of samples he has access to.

Consider ciphertext structure (3). An attacker is interested
in revealing values of 𝑢(𝑥) and 𝑛. Thus an encrypted plaintext
𝛼 acts like an unwanted noise for him, which he can easily

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 473

remove in KPA scenario:

𝑐𝑖(𝑥) = 𝑐′𝑖(𝑥)− 𝛼𝑖 = 𝑠𝑖(𝑥)𝑢(𝑥) + 𝑛𝑟𝑖(𝑥),∀𝑖 = 1, . . . , 𝑙

𝒟𝑃𝑘𝑒𝑦
(𝑐𝑖(𝑥)) = 0

Nevertheless 𝑛𝑟(𝑥) term is still present in 𝑐𝑖(𝑥), making
it impossible to use GCD algorithm to reveal 𝑢(𝑥). In turn,
without being able to remove term 𝑠𝑖(𝑥)𝑢(𝑥) from 𝑐𝑖(𝑥),
an adversary can’t extract value of 𝑛 by applying 𝐺𝐶𝐷 to
coefficients of 𝑛𝑟(𝑥).

Let’s consider another hypothetical attack targeted on find-
ing roots of 𝑢(𝑥) over Z𝑛𝑚. Assume that adversary tries
different elements of Z𝑛𝑚 according to some strategy. For
each such element 𝑥* he performs following test:

GCD(𝑐1(𝑥
*), . . . , 𝑐𝑙(𝑥

*), 𝑛𝑚) ̸= 1 (11)

If there exists such 𝑥* ∈ Z𝑛𝑚, which passes test (11),
attacker will also recover 𝑛 = GCD(𝑐1(𝑥

*), 𝑛𝑚). This
information is enough to decrypt any ciphertext 𝑐(𝑥):

𝛼 = 𝑐(𝑥*) mod 𝑛

This illustrates that requirement for 𝑢(𝑥) to be irreducible
over Z𝑛 is substantial, because it makes impossible such kind
of attack.

D. Typical attacks on Polly Cracker cryptosystems

For the sake of completeness we must consider proposed
cryptosystem as member of Polly Cracker system and verify
that it’s secure against already known attacks. In [5], there
is a good review of those. They may be classified into
several groups: attacks based on Buchberger’s algorithm [4] or
it’s modifications, sparse polynomial based attacks and other
algebraic attacks based on solving equation systems.

The first group uses Buchberger’s algorithm to reconstruct
Gröbner basis of a secret ideal, for example, the Fantomas
[3] and 2-nomial attacks [9]. These attacks could be barely
applied to our cryptosystem, because Gröbner basis theory for
finite integer rings isn’t currently developed and there is no
suitable modification of Buchberger’s algorithm. Typical for
this purpose method of ring decomposition in conjunction with
Chinese Remainder Theorem couldn’t be applied here due to
hardness of factoring public ring modulus.

The second group exploits sparseness of polynomials used
for encryption which is obviously not our case. We use univari-
ate polynomials and can afford using dense ones. Examples
for these groups are intelligent linear algebra [10, Ch. 5, S6],
differential [11] and zero-evaluation attacks [5, p. 7-8].

Finally, most of other attacks reduce to solving various
equation systems over a finite ring, which is Z𝑛𝑚 in our case.
As it was already mentioned, the problem of root finding over a
finite integer ring is computationally hard in case of composite
modulus. This allows us to state that our cryptosystem is
secure against typical Polly Cracker attacks.

VI. GROWING CIPHERTEXT VARIANT

As it was shown in previous section, security of our cryp-
tosystem mostly relies on hardness of factoring public ring
modulus 𝑛𝑚. It turns out, that we can trade some additional
level of security for calculations performance. The idea behind
this is using Z as public ring instead of Z𝑛𝑚. Thus we transfer
only 𝑃 ′

𝑝𝑢𝑏 = ⟨𝑤(𝑥)⟩ to a server, keeping 𝑛𝑚 in secret and all
encrypted calculations are performed over Z[𝑥]/ℐ𝑤.

Corollary 3. Statements from corollaries 1 and 2 are also
correct for cryptosystem defined by pair of ⟨𝑃𝑘𝑒𝑦, 𝑃

′
𝑝𝑢𝑏⟩.

Proof: This directly follows from existence of natural
homomorphism from Z to Z𝑛.

From security point of view, hiding product of 𝑛𝑚 gives
us two advantages: any possible attacks based on factoring
𝑛𝑚 become impossible, since an attacker doesn’t know the
product; when brute-forcing 𝑢(𝑥) an adversary has no strict
upper bound for key coefficients, making search harder. Thus,
brute-force attack described in section V-B is still theoretically
possible, though it becomes even more sophisticated.

The only drawback of required scheme is ciphertext growth
during encrypted calculations. Let 𝑝 = ⌈𝑙𝑜𝑔2(𝑛)⌉ be a number
of bits, occupied by single coefficient and 𝑑 = deg[𝑐(𝑥)]. De-
note size[𝑐(𝑥)] a number of bit occupied by 𝑐(𝑥). Hereinafter
in this section, when adding or multiplying polynomials, we
always mean operations performed modulo 𝑤(𝑥).

When adding two polynomials, each coefficient might grow
by 1 bit, resulting up to 𝑑 bits growth for a whole polynomial.

size[𝑐(𝑥) + 𝑐(𝑥)] ≤ size[𝑐(𝑥)] + 𝑑. (12)

Similar, after multiplication each new coefficient is a sum
of up to 𝑑 products of original coefficients. Product of two
numbers might take up to twice more space then original
numbers, resulting following estimation:

size[𝑐(𝑥) · 𝑐(𝑥)] ≤ size[𝑐(𝑥)] · 2 + 𝑑2 (13)

From (12), (13) we can conclude, that despite of better
security this variant is recommended for use only if intended
computations are short enough to afford ciphertext growth.

VII. IMPLEMENTATION-RELATED ISSUES

Any cryptosystem intended for practical usage requires not
only theoretical proof of security, but also careful implemen-
tation. In our work we actively use many non-trivial entities,
such as irreducible polynomials and large prime numbers.
Thus, implementation brings up some additional mathemat-
ical questions, which are critical for actual level of security
provided by it. In our case two major issues are generation of
random prime numbers and random irreducible polynomials.
Additionally, there is a class of software engineering prob-
lems, such as efficient memory management and polynomial
arithmetics, which are quite important for good performance of
encrypted calculations. We admit importance of this questions,
though they are out of this paper’s scope.

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 474

A. Random prime numbers

Our encryption definitely falls into a category of cryptosys-
tems, which rely on integer factorization hardness. That’s why
we require high-quality random prime numbers for key genera-
tion. Current industry-wide standard is usage of pseudoprimes,
which are prime with high probability. Though throughout this
paper we always consider numbers 𝑛 and 𝑚 to be prime, this
fact isn’t critical for correctness of encryption and calculations
over ciphertexts, which means it’s safe to use pseudoprimes
in actual encryption implementation.

Another implementation issue is type of prime number
to use. Though there is a debate [12] about strong primes
advantages, we prefer to use them instead of arbitrary large
pseudoprimes, since there are fast enough approaches [13] to
generate them.

Finally, we note that recent research [14] shows that there
are efficient algorithms, that are able to factorize product of
two primes with small difference. For example, [15, sec. 4.1.2
and C.3] requires at least 100 bit difference between them.
Though this analysis was performed for RSA cryptosystem, it
also applies to our work.

B. Random irreducible polynomials

Since we need to construct random irreducible polynomials,
most of existing deterministic algorithms aren’t suitable for us.
Thus we consider taking random polynomials and testing them
for irreducibility. There is estimation [8, p. 142] of number of
irreducible polynomials of given degree 𝑑 over finite field Z𝑛:

𝑛𝑑

𝑑
− 𝑛(𝑛𝑑/2 − 1)

(𝑛− 1)𝑑
≤ |𝐼𝑛,𝑑| ≤

𝑛𝑑 − 𝑛
𝑑

which means that a fraction 1/𝑑 of polynomials of degree 𝑑
is irreducible.

In our encryption, we need polynomials irreducible over
Z𝑛. Using this estimation we can find an optimal trade-off
between encryption security and space efficiency, depending
of value of 𝑑. Assume that 𝑛 is 1024-bit number. Then we’d
have |𝐼𝑛,𝑑| ≈ 21023·𝑑/𝑑 irreducible polynomials.

This means even 𝑑 = 3 is enough to make it merely
impossible to generate same polynomial twice. I. e. if one
would encrypt a petabyte of 64-bit integers, chance that one
irreducible polynomial would have been used twice is be about
2−3020. At the same time, size of ciphertext for a single integer
would be 1024 bytes, 128 times larger than plain text.

Finally, it’s critical for encryption performance to have
efficient irreducibility test for our approach. According to [16]
Ben-Or test is the most effective one, especially for low-degree
polynomials like we are proposing.

VIII. PRACTICAL ASPECTS OF THE SCHEME

Since we claim our scheme to be practical, we must
consider more precisely how it could be applied to a real-
world computations. We have already mentioned, that we must
use private ring with modulo being about 1024-bit number to
reach required level of security. The only practical difficulty
is mismatch between private ring Z𝑛 and integer rings which

computer operates, typically Z232 or Z264 , which we denote
as Z𝑐𝑜𝑚𝑝. Indeed, there is no homomorphism between Z𝑛 and
Z𝑐𝑜𝑚𝑝, thus we must take care of possible calculation result
mismatches.

Fortunately, Z𝑛 is much larger than Z𝑐𝑜𝑚𝑝. Therefore,
decryption correctness issues would occur only after integer
overflow in Z𝑛. In practice most of calculations are organized
to prevent integer overflow in Z𝑐𝑜𝑚𝑝. For such cases our
cryptosystem is able to evaluate formulas of an arbitrary
length.

If a specific type of calculations relies on integer overflows,
we can construct a cryptosystem to tolerate at least 𝑙 over-
flows for any predefined 𝑙 > 0. Denote 𝑝 = ⌊log2(𝑛)⌋ —
guaranteed number of significant bits, which may be taken
by a number from private ring before overflow might occur,
𝑞 = ⌊log2(|Z𝑐𝑜𝑚𝑝|)⌋ — number of bits in native computer
data type we need to encrypt.

Consider operations on two integers 𝑎1, 𝑎2 of 𝑘1, 𝑘2 signif-
icant bits respectively. Following statements describe growth
of bit number taken by operation result:

max(𝑘1, 𝑘2) + 1 ≥ log2(𝑎1 + 𝑎2)

𝑘1 + 𝑘2 ≥ log2(𝑎1 · 𝑎2).

In a worst case, result size increases by one bit after each
addition and doubles after multiplication. Therefore, to tolerate
at least 𝑙add addition and 𝑙mul multiplication overflows we
must choose

𝑝 ≥ 𝑙add + 𝑞 ⇒ 𝑛 ≥ 2𝑙add+𝑞

𝑝 ≥ 𝑞 · 2𝑙mul ⇒ 𝑛 ≥ 2𝑞·2
𝑙mul .

For example, in case of 32-bit integers and 1024-bit private
ring we can tolerate at least 91 addition and 4 multiplication
sequential overflows. We expect that this is quite enough for
most kinds of calculations, especially in database.

There is one important observation from this example.
It’s reasonable to choose private ring modulus 𝑛 of 2𝑥 + 1
significant meaningful binary digits. This would permit one
additional multiplication overflow at cost of only 1 bit increase
of private ring. Therefore, if implementation allows us to store
ciphertext polynomial coefficients aligned to a single bit, we
could benefit from using 1025-bit private ring and 2050-bit
public ring instead of 1024 and 2048-bit ones.

IX. PERFORMANCE

To test actual performance of our encryption scheme we’ve
implemented a small C++ library, on top of mathematical
primitives from NTL with GMP backend.

We have tested performance with following parameters:
deg[𝑢(𝑥)] = 1, 3, 5, 10 and size of prime numbers 𝑛,𝑚 equals
512 and 1024 bits, 8 different configurations in total.

We had following reasoning behind selected values of
deg[𝑢(𝑥)]: 1 as the least theoretically possible value, thus it
must have the highest performance among others; 3 is optimal
value from security standpoint, discussed in section VII-B;
5 and 10 were selected to evaluate overall performance loss

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 475

Table I
ENCRYPTED ADDITION OPERATION PERFORMANCE

⌈log2(𝑛)⌉ deg[𝑢(𝑥)] Additions/sec Overhead

512

1 1138317 1100
3 472131 2600
5 253055 4900

10 115210 10700

1024

1 942608 1300
3 295707 4200
5 131879 9300

10 68498 18000

Table II
ENCRYPTED MULTIPLICATION OPERATION PERFORMANCE

⌈log2(𝑛)⌉ deg[𝑢(𝑥)] Multiplications/sec Overhead

512

1 74074 8800
3 16844 38600
5 7367 88300
10 2360 275600

1024

1 29423 22100
3 5811 111900
5 2504 259700
10 790 823300

Table III
ENCRYPTION AND DECRYPTION SPEED

⌈log2(𝑛)⌉ deg[𝑢(𝑥)] Encryptions/sec Decryptions/sec

512

1 95080 551298
3 13037 188971
5 4860 99548

10 1370 35886

1024

1 69334 290573
3 6376 83119
5 2240 40399

10 581 13532

trend. As of bit sizes, 512 and 1024 are the most interesting
values, since currently factoring 1024-bit number is recognized
to be infeasible for most of organizations in the world and
2048-bit is considered as “future-proof” for several upcoming
decades.

All presented results were obtained on consumer-grade
laptop with Intel Core i5 M460 2.53 GHz CPU, under Ubuntu
Linux 13.10, using NTL 6.0.0 and GMP 5.1.2 compiled by
GCC 4.8.1.

Encrypted calculation performance was measured for point-
wise addition and multiplication of two random vectors of
length 400. As a reference, the same test was performed for
vectors of 64-bit long integers. Tables I and II hold results
of these tests. “Overhead” column shows slowdown factor
comparing to unencrypted calculations. Addition demonstrates
expected performance hit of about 103–104 times, caused by
more expensive long arithmetic involved and significant size of

operands (128 times larger than regular 64-bit integer). Multi-
plication suffers from slowdown by 104–105 times because
more computationally expensive polynomial multiplication
algorithm and (for our implementation) frequent memory re-
allocations inside NTL. Thus, we’d expect significantly better
results in case of implementation, which doesn’t actively use
dynamic memory.

Finally, in table III we see expected encryption performance
losses for higher degrees of 𝑢(𝑥) caused higher complexity of
finding irreducible polynomials. Decryption performs better
both because it’s computationally simpler and doesn’t require
searching irreducible polynomials.

X. DISCUSSION AND FUTURE WORK

In this paper we have proposed a cryptosystem which may
be considered as a candidate for a practical FHE scheme
applicable for real-world usage. Certainly our modifications,
called to resist known attacks require more thorough analysis
for actual level of security reached.

We highlight the method of restricting ciphertext growth as
the main practical result of this work. The idea of exploiting
ciphertext structure and a valid encryption of zero to reduce
ciphertext length in cryptosystem homomorphic to subtraction
might be applied to other encryption schemes. This is the
main field of future research, which should bring us closer
to practical homomorphic encryption.

Our cryptosystem has also some useful properties, which
might become important in practical usage. For example,
variable substitution might be exploited as on-the-fly key
switching mechanism without re-encryption. If we consider
ciphertext 𝑐(𝑥) = 𝑠(𝑥)𝑢(𝑥) + 𝑛𝑟(𝑥) + 𝛼 and variable sub-
stitution 𝑥 = 𝑓(𝑦), then 𝑐(𝑓(𝑦)) can be decrypted with key
𝑃𝑘𝑒𝑦 = ⟨𝑛, 𝑢(𝑓(𝑦))⟩, though the old key ⟨𝑛, 𝑢(𝑥)⟩ won’t fit
anymore. In practice this may become a real obstacle for an
adversary. By the time he will recover the old key it won’t be
useful.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009. [Online]. Available:
http://crypto.stanford.edu/craig/

[2] M. Fellows and N. Koblitz, “Combinatorial cryptosystems galore!”
Contemporary Mathematics, vol. 168, p. 51, 1994.

[3] B. Barkee, D. D. C. Can, J. Ecks, T. Moriarty, and R. F. Ree,
“Why You Cannot Even Hope to use Gröbner Bases in Public Key
Cryptography: An Open Letter to a Scientist Who Failed and a
Challenge to Those Who Have Not Yet Failed,” Journal of Symbolic
Computation, vol. 18, no. 6, pp. 497–501, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0747717184710613

[4] B. Buchberger, “A theoretical basis for the reduction of polynomials
to canonical forms,” SIGSAM Bull., vol. 10, no. 3, pp. 19–29, 1976.
[Online]. Available: http://doi.acm.org/10.1145/1088216.1088219

[5] F. L. dit Vehel, M. G. Marinari, L. Perret, and C. Traverso, “A survey
on polly cracker system,” Gröbner bases, coding and cryptography, pp.
263–283.

[6] M. R. Albrecht, P. Farshim, J.-C. Faugère, and L. Perret, “Polly cracker,
revisited,” in Advances in Cryptology–ASIACRYPT 2011. Springer,
2011, pp. 179–196.

[7] M. Rabin, “Digitalized signatures and public-key functions
as intractable as factorization,” 1979. [Online]. Available:
http://dl.acm.org/citation.cfm?id=889813

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 476

[8] R. Lidl and H. Niederreiter, “Finite Fields: Encyclopedia of Mathematics
and Its Applications.” . . . & Mathematics with Applications, p. 1983,
1997.

[9] R. Steinwandt, W. Geiselmann, and R. Endsuleit, “Attacking a
polynomial-based cryptosystem: Polly Cracker,” International Journal
of Information Security, vol. 1, no. 3, pp. 143–148, 2002.

[10] N. Koblitz, “Algebraic aspects of cryptography. Volume 3 of Algorithms
and computation in mathematics,” 1998.

[11] D. Hofheinz and R. Steinwandt, “A “differential” attack on Polly
Cracker,” in Proc. of ISIT, vol. 2002, 2002, p. 211.

[12] R. Rivest, “Are’strong’primes needed for RSA,” In The 1997
RSA Laboratories Seminar Series, . . . , 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.5241

[13] M. Wiener, “Safe Prime Generation with a Combined Sieve.” IACR
Cryptology ePrint Archive, vol. 3, pp. 1–2, 2003. [Online]. Available:
http://eprint.iacr.org/2003/186.pdf

[14] B. D. Weger, “Cryptanalysis of RSA with small
prime difference,” Applicable Algebra in Engineering, Com-
munication . . . , pp. 1–11, 2002. [Online]. Available:
http://www.springerlink.com/index/L19T64VJL37TMXN2.pdf

[15] ANSI, “X9. 31: 1998: Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA),” American
National Standards Institute, 1998.

[16] S. Gao and D. Panario, “Tests and constructions of irreducible polyno-
mials over finite fields,” in Foundations of Computational Mathematics.
Springer, 1997, pp. 346–361.

International Journal for Information Security Research (IJISR), Volume 4, Issue 3, September 2014

Copyright © 2014, Infonomics Society 477

