
Towards Securing Databases on Mobile Devices: A Log-based Approach

Subhasish Mazumdar, Anand Paturi
Computer Science and Engineering Department 
New Mexico Institute of Mining and Technology 

801 Leroy Place, Socorro, NM 87801, USA

Abstract

Mobile devices like smart phones empower their
users to download, install, and execute a spectrum of
attractive applications from both service providers and
third parties. Consequently, users are increasingly re-
lying on such devices not only for storing personal data
but also for enabling purchases, managing finances,
tracking diets, transacting business, and supporting so-
cial interactions. But the software systems on these de-
vices are less robust than their laptop and desktop coun-
terparts. These two factors can only entice attackers to
manipulate the users’ personal data via malicious code
or malware that exploits the weaknesses of these mobile
systems. Furthermore, mobile devices are often stolen
or misplaced and the stored data, which users value
more than the hardware, compromised. Since an appli-
cation typically uses its own database on the mobile de-
vice to store pertinent user data, our aim is to enhance
the security of those databases. We propose a consoli-
dated logging scheme that reflects all transactions per-
formed on all those databases. Only a part of this log
needs to be stored on the mobile device, thus address-
ing the conflict between space limitation in these de-
vices and the space requirement of logging. Our scheme
is tamper-resistant; by modeling adversaries with var-
ious degrees of strength, we formally test our claim of
tamper resistance against them. We explain how our
scheme addresses the problems created by malware and
theft and helps restore lost data.

1. Introduction

Modern smart phone operating systems like iOS,
Blackberry OS and Android OS have introduced a new
feature called the App Store, using which mobile device
users can browse, download, and install third party ap-
plications. Most of these third-party applications make
use of a lightweight database management system to

create databases for storage, retrieval, and modification
of application-specific information; for example, appli-
cations can provide an address book, manage a calen-
dar, or the user’s financial profile. Currently SQLite
is being used as backend database management sys-
tem for all mobile applications in the operating sys-
tems mentioned above. For some applications, such a
database would be part of the mobile device and never
require synchronization with the server; for others, such
a database would frequently be uploaded on a stationary
database server allowing the user to execute most oper-
ations even when disconnected from the server [2]. In
this paper, we envision the SQLite database framework
to be modified to incorporate a logging feature that can
be used for forensic analysis.

Since every business is trying to attract its cus-
tomers using the mobile environment and given the
growing popularity and user-friendliness of devices like
iPhone, Blackberry and Android-based phones, it is
easy to predict that mobile applications will become the
next hot target for attackers. Consider a mobile appli-
cation that is used to download and store coupons or
coupon codes or discount offers for shops in a local-
ity [3]. Some of those coupons may even come from
other users living in those areas. The application that
organizes those coupons would use a mobile database.
But, if a coupon contains malicious code, then the re-
sult could be unapproved accesses and alterations to the
user’s databases.

Primitive steps towards mobile device forensics
have been taken in the form of tools for forensic analy-
sis of PDAs (Personal Digital Assistants) [1]. But they
do not apply to architectures of current mobile devices
like iPhone, which runs a mini version of Mac OS X, or
gphone, which has Linux-based Android. Moreover, a
mobile database may be a stand-alone local database or
a database embedded in a mobile application. This is a
major difference: while in desktop database forensics,
we examine a stand-alone database, in mobile database
forensics, we need to look at a database that is part of

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 183



Figure 1. Log Transfer Scheme

an application, (one which may not need to contact a
server at all).

The data in a mobile device is often more valuable
to its owner than the hardware. If the mobile phone of
a user that contains lots of mobile applications is lost
and later found, the owner may be keen on learning
which operations were performed by the thief using the
owner’s credentials. For example, if the device had a
database of his clients (financial or health-related), the
owner might want to know if anything was changed or
deleted or just read.

Logging is a well-known technique for database re-
covery. But the problem is that as database management
systems on mobile devices are not very robust, mal-
ware can also easily attack those logs. Also, logs re-
quire a great deal of storage. In this paper, we propose
a tamper-resistant logging mechanism that is aware of
these realities and can be used to detect tampering on
such databases.

Our paper is structured as follows. In the next sec-
tion, we outline our approach enumerating the modest
enhancements we require and the structure of the log
that is the basis of our tamper-resistant logging method;
in the subsequent section, we focus on detection of
tampering by formalizing our scheme, offering a the-
orem that expresses its tamper-detection properties, and
showing that the entire log need not be stored at the de-
vice, thus expanding on our earlier work [4]. Next, we
discuss some applications of our approach. After sur-
veying related work, we offer concluding remarks.

2. Research Rationale

We envision mobile systems offering a lightweight
database management system (DBMS) like sqlite

shared by all the applications executing on the machine.
A separate database Dj is created for each applica-
tion Aj . We will refer to the tuple containing all these
databases as D, the database.

We make two architectural requirements on that
DBMS. First, it must support a logwriter process, which
runs in the background. This process is responsible
for recording in a log file all successful database op-
erations along with precise timestamps. The major dif-
ference with conventional logging is that even read or
select operations are logged. Second, we require that
the DBMS will block all operations on all the databases
in D if the logwriter process is either killed or stopped
(owing to a software crash or malicious action); it will
continue only after a restart.

Since a mobile device has space constraints, the log
created by the logwriter is not stored in its entirety on
such a device: its contents are periodically transferred
to the stationary database server (SDS) via a mobile sta-
tion unit (MSU) serving the cell or zone in which the
mobile device is located (see Figure 1). Since the entire
log is not stored on the mobile device, only a part, we
call this partial logging. At any given time, the com-
plete log is a combination of the log on the SDS and
that on the mobile device.

We also assume system support for a unique secret
value ω. It could perhaps be obtained by hashing the
concatenation of the mobile IMEI (International Mo-
bile Equipment Identity) number, certain geographical
attributes during initial set up, and the owner’s customer
identification number. This secret value is read-only,
i.e., no process can modify it once it has been created;
and the only process that can access it is the logwriter.
The secret value ω is stored in an encrypted form using
a master key that could be generated in the following
way. The user is required to enter a password during
the initial set up of the device. This password is com-
bined with his/her customer id to create a key for AES
(Advanced Encryption Standard). This key is subse-
quently used for all log-related data encryption and de-
cryption but need never be stored in non-volatile mem-
ory. (When and how often the system asks the user to re-
enter this password is an implementation detail we ig-
nore here.) Calculating ω is almost impossible for an at-
tacker because of several factors: the difficulty of guess-
ing those exact geographical attributes; of accessing the
stored value; and in the unlikely event of somehow ob-
taining that value, of decrypting it owing to ignorance
of the user password, and consequently, the master key.

We compute dbh, a hash of all the databases along
with ω. The hash dbhi of database Di is obtained by
hashing each table in Di using a secure hash algorithm
and then hashing their concatenation; dbh is obtained

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 184



n t h
Index Type App Data Oper- DateTimestamp Old New Hash

&ID Name Item ation Value Value
1 c0 h0 dbh0

2 T1 jhk456g4 R1 Create 12/18/2008,10:55:34:56 Null Null h1

3 T2 edf4545k R2 Insert 12/18/2008,12:34:56:32 Null Fghghfghdfy h2

67456546546
5gbgf5676575

4 T3 jhk456g4 R4 Delete 12/18/2008,17:09:45:45 Fdf8d7fd8f Null h3

hdkfdkjfd8
fdfjkdfdfkl

5 c1 h3 dbh1

6 T4 56hght56 R2, R4 Update 12/18/2008,18:34:43:56 454jh4cx3f 3FHGHgfgfb h4

d3x4i4ou54 jdnbm,dsfh
ok54b5c5 suiyjkkdj

7 T5 5gsdgff6 R2 Select 12/18/2008,18:34:47:06 Null Null h5

Figure 2. Log before the first transfer to the server

by hashing the concatenation of all dbhi and ω. Such
a database hash aids in detecting surreptitious changes
to the database without any corresponding record in the
log.

We make use of checkpointing. Checkpoints are
written to the log at periodic intervals, once Ntr transac-
tion log entries have been recorded. A database hash is
always calculated for committed data at that time. One
possibility for optimization during checkpointing arises
when most of the databases remain unchanged: only the
changed databases need to be hashed. Checkpoints also
help delineate a part of the log that gets transferred to
the server. Periodically, a sequence of entries from the
beginning up to the entry prior to the last checkpoint
record is marked, transferred to the server, and deleted
on the mobile device. In order to facilitate this pro-
cess when the first record is the only checkpoint record
in the log and neither checkpointing nor transfers have
taken place in a while, dummy (no-change) transaction
records may be added to the log so as to trigger imme-
diate checkpointing.

2.1. Log Structure

There are two kinds of log entries: checkpoint
records and transaction records arranged with one of
the former followed by Ntr of the latter, e.g.,

< chk0 >, < e1 >,< e2 >, · · · , < eNtr
>, < chk1 >,

< eNtr+1 >, · · · , < e2Ntr
>, < chk2 >, · · ·

where < chk0 >,< chk1 >, · · · are checkpoint records
while < e1 >,< e2 >, · · · are transaction records re-
flecting queries or updates of committed transactions.

Figure 2 is an example of such a log with Ntr = 3.
Each entry has a sequentially increasing unique integer
index number n ≥ 1 and a hash value h. We assume a
function last index() that returns the last used value of
the index number, zero prior to the first use. The value
would be read off a counter that is stored encrypted us-
ing the master key mentioned earlier. The logwriter pro-
cess would typically make use of a procedure to incre-
ment that counter and assign the new value to the index
field of a log entry atomically.

The mth checkpoint record is of the form

< i, cm, string, dbhm >,

where i is the index number, string is obtained from
the previous log entry by copying its hash value hj , as
explained below; if m = 0, then string is a random
value h0 shared between the server and the mobile de-
vice; dbhm is a database hash computed at checkpoint
time: it is a hash of all the databases along with the se-
cret value ω.

The jth transaction record has the form

< i, Type&ID,AppName, DataItem, Operation,
DateT imestamp,OldV alue,NewV alue, hj >.

Type&ID is the identifier of the transaction; AppName
is the name of the responsible mobile application;
DataItem is the name of the accessed data item; Oper-
ation is the action applied on the data item; DateTimes-
tamp is the date and time of the operation; OldValue and
NewValue contain old and new values (if any, Null oth-
erwise) resulting from the operation. We will refer to
these components as a vector of transaction parameters
tj ; and thus denote the same record equivalently as

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 185



< i, tj , hj >.

The hash component hj is a hash value obtained
by applying a secure hash function fsha (e.g., a higher
member of a SHA-n family) on the vector of transac-
tion parameters, the secret value ω mentioned earlier,
and the hash value hj−1 of the previous log entry. If
the previous entry is a checkpoint record, hj−1 is sub-
stituted by the string component of that record. More
precisely, if the log entry

• does not immediately succeed a checkpoint record,
then

hj = fsha(tj + ω + hj−1), where + denotes
concatenation (the vector components are concate-
nated).

• otherwise, i.e., if it immediately succeeds a check-
point record < i, ck, str, dbhk > containing string
str, then

hj = fsha(tj + ω + str).

Figure 2 is an example of such a log. In that example,
h1 = fsha(T1 + jhk456g4 + R1 + Create

+ 12/18/2008, 10 : 55 : 34 : 56 + Null +
Null + ω + h0);

h2 = fsha(T2 + edf4545k + R2 + Insert +
+ 12/18/2008, 12 : 34 : 56 : 32 + Null
+Fghghfghdfy674565465465gbgf5676575
+ ω + h1).

2.2. Encryption of columns

We have omitted one detail for ease of exposition.
The following components of the log entries appear in
an encrypted form using the same master key mentioned
earlier.

• Index values (n); attackers find it harder to fake the
log or parts of it. (In order to enhance security by
thwarting an examination of a sequence of num-
bers, we could increment by a constant c 6= 1, or
use a more sophisticated number pattern. In this
paper, we assume an increment-by-one policy.) In
order to help explain the examples, we do not show
the index entry encrypted in Figure 2.

• Application names; old and new values: hiding
them enhances the privacy of user transactions.

2.3. Log Transfer

Upon initialization, through communication with
the server, the < chk0 > checkpoint record is created

n t h

5 c1 h3 dbh1

6 t4 h4

7 t5 h5

Figure 3. Log on the mobile device after
the first transfer

n t h

1 c0 h0 dbh0

2 t1 h1

3 t2 h2

4 t3 h3

Figure 4. Log on the server after the first
transfer

and stored in the mobile device log. Its string value h0 is
a random value shared with the server. We refer to this
as the zeroth transfer of the log. Until the next trans-
fer, the server will respond to a request for the index
number and hash value of the last record transferred to
it with zero and h0 respectively.

Once the log on the mobile device reaches a cer-
tain size, at the next available opportunity to connect to
the server, log transfer takes place, i.e., the sequence of
entries in the log on the mobile device from the first en-
try (which must be a checkpoint) to the one just prior to
the last checkpoint are marked, transferred to the server,
and deleted from the mobile device. That last check-
point entry now becomes the first entry in the new log
on the device.

For example, suppose the log is in the state shown
in Figure 2 before the very first transfer. Figures 3 and
4 show the resulting log on the device and the server re-
spectively after the transfer. All entries up to the record
just prior to checkpoint c1, i.e., records with index num-

n t h
121 c30 h90 dbh30

122 t91 h91

123 t92 h92

124 t93 h93

125 c31 h93 dbh31

126 t94 h94

Figure 5. A general snapshot of the log.

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 186



pairOK(1, λ) = C(λ1) ∧ (λ1.s = LDBH()) ∧ (λ1.n = 1 + LNDX())
∧ (undo hash(2, length(λ)) = λ1.h)

pairOK(i, λ) = [λi.n = 1 + λi−1.n] ∧
[(C(λi) ∧ T (λi−1) ∧ (λi.s = λi−1.h) ∧ (undo hash(i + 1, k) = λi.h)) ∨
(T (λi) ∧ C(λi−1) ∧ (fsha(λi.t, ω, λi−1.s) = λi.h)) ∨
(T (λi) ∧ T (λi−1) ∧ (fsha(λi.t, ω, λi−1.h) = λi.h))], where i > 1

logOK(λ) = (λk.n = last index()) ∧ (num checkpts(λ) = 1 + b k − 1
1 + Ntr

c)

∧ (num transrecs(λ) + num checkpts(λ) = last index()− LNDX() + 1)

∧ (
i=k∧
i=1

pairOK(i, λ)), where k = length(λ)

Figure 6. Definition: predicates pairOK and logOK.

bers 1 through 4, are now at the server and all of them
are deleted from the log on the device, leaving check-
point c1 as the first entry and its only checkpoint en-
try. Note that the string component of the c1 check-
point record is equal to the hash value of the previous
log record and that record has been stored at the server.
After several transfers, the log may look like Figure 5.

3. Detection of tampering

Let a log fragment λ of length k be a sequence of k
records:

λ =< λ1, · · · , λk > where length(λ) = k

Define predicates C(λj) and T (λj) recognizing λj

as a checkpoint and transaction record respectively. Let
functions num checkpoints(λ) and num transrecs(λ)
return the number of checkpoint records and transac-
tion records in the given log fragment. We use the dot
notation to denote extraction of components from log
entries, e.g., λi.n, λi.h, λi.t, and λi.s, extract the in-
dex number, hash value, transaction parameters, and
the string component respectively from a log entry λi.
Nullary functions LDBH and LNDX represent requests
to the server to return the hash and index value respec-
tively from the last log entry transferred to it. The func-
tion undo hash(p, q) computes a database hash after un-
doing the updates in the transaction records found in
the log entries λp, λp+1, · · · , λq in reverse order. (Since
the entire log may not be available within the mobile
device, destructive data definition operators like drop
table may have to be accompanied by the associated
schema in order to create the table and perform the up-
dates being undone.)

Now we can define two predicates pairOK and lo-
gOK whose second parameter λ is a fragment of the
device log under examination. Let us walk through
their definitions (given in Figure 6). The first equa-
tion defines pairOK when its first input parameter is
equal to 1 corresponding to the first entry in the log
fragment; the predicate checks that the first entry is a
checkpoint record, that its string component and index
number respectively equals and sequentially follows the
hash value and the the index number of the last log en-
try recorded at the server, and that its hash component
equals the database hash at that computational state.
The second equation considers the same predicate when
its first input parameter i > 1 corresponding to entries
after the first one in the log fragment; it considers the
ith and the (i − 1)th log entries and checks a pair-
wise integrity constraint imposed by the log structure.
In the first line of this equation, it checks that the in-
dex numbers are in sequence; in the second line, that if
the ith is a checkpoint record preceded by a transaction
record, then the ith record’s string component equals
the hash value of the (i − 1)th and that the database
hash component of the ith record equals the database
hash at that computational state; in the third line, that
if the ith is a transaction record preceded by a check-
point record, then the hash value of the ith is correctly
obtained from its own parameters and the string com-
ponent of the (i − 1)th (which should be equal to its
preceding transaction record’s hash value); in the fourth
line, that if the ith and the (i − 1)th are both transac-
tion records, then the hash value of the ith is correctly
obtained from its own parameters and the hash value of
the (i− 1)th.

The second predicate, logOK, checks that the last

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 187



sequence number is correct, the number of checkpoints
and transaction records are both correct, and that each
pair of successive log entries satisfies pairOK.

Observation: In order to evaluate logOK on the mobile
device, only two values are required from the server:
the results of LNDX and LDBH.
Proof: By inspection of the predicate logOK and
pairOK.
The data items required are D and λ, both available on
the device. The component extraction functions indi-
cated by the dot notation can be evaluated given a log
record; the functions num checkpts and num transrecs
can be evaluated given the log fragment; last index can
also be computed by looking up a counter and decrypt-
ing.

The function undo hash checks that the hash of the
database state in the last checkpoint cm equals the hash
computed from the current database by undoing the up-
dates recorded in transaction records following cm; if
there is more than one checkpoint, their corresponding
database hashes are similarly checked. Of course, the
database is restored to its original state by redoing the
undos.

The only two remaining functions LNDX and
LDBH require values from the server.
End of proof.

Observation: If logging is error-free, then logOK
evaluates to true.
Proof: This follows trivially from the close tie between
the definition of logOK and the structure of the log.
End of proof.

Now we consider the more interesting question,
can tampering be detected by logOK evaluating to false?
First, we must be clear about the adversary A, one who
can change the databases, the log files, or both. For-
mally, we assume that A knows

1. the log structure and how to extract the compo-
nents of a given log entry;

2. how to access the log file on the mobile device; and
3. how to access the database files;

but does not know the

1. master key used for encryption, since it is cre-
ated using ingredients that are hard to guess plus
an owner generated password we presume is pro-
tected by the user;

2. value of ω: it is a combination of multiple factors
described above and unique for every mobile de-
vice making it hard to guess; accessible only to the

logwriter process; and stored encrypted using the
master key; and

3. value of last index(), the last index number used,
as it is stored encrypted. This is the result of the
ignorance of the masterkey (item 1); we are mak-
ing it explicit for clarity.

Second, we define tampering to be the result of an
adversary bypassing the DBMS to perform any or all
of (a) insertion / deletion / modification of one or more
log records, or (b) modification of a database file Dj .
(A sequence of deletes and inserts that leave the log
or database files in the same state is not considered to
be tampering.) Note that we implicitly assume that the
adversary is neither able to alter the operating system
nor the database management system.

Theorem: If logOK is true at each of the first m (m ≥ 0)
log transfers, then tampering by adversary A between
the mth and the (m + 1)th log transfers will result in
logOK=false with high probability (w.h.p.) at or before
the (m + 1)th log transfer.
Proof: We consider separate methods of tampering.

update of log record

• IfA alters a transaction record in the log, ow-
ing to ignorance of ω, the hash value will not
be correct.
Note that the previous transaction record’s
hash value is used in the computation of the
current record even if the previous record was
a checkpoint (its string value equals the pre-
vious transaction record’s hash value) or if
it has already been transferred to the server
(the function LDBH fetches it). This chain-
ing thwarts replay attacks because A cannot
copy an older transaction record correspond-
ing to a known transaction update. Further,
this incorrect hash value will make the hash
values of all subsequent entries incorrect.

• When altering a checkpoint record, A can ei-
ther alter the index number or the database
hash. The former is easily detected because
it is encrypted and part of a sequence. The
latter will lead to a database hash value that
will not match the hash computed from the
database D; even if A bypasses the DBMS
and alters D, ignorance of ω will leave A
unable to construct the right database hash
value.

insertion of log record

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 188



• If A inserts a non-terminal transaction record
in the log, there will be two errors. First, the
hash value will be incorrect owing to an ig-
norance of the ω value. Replay attacks are
avoided since the previous entry’s hash value
is also used in the computation.
Second, since A does not know how to de-
crypt and encrypt the correct index value, A
will have to copy it off the next entry; this
will result in two entries with the same index
number.

• If A inserts a terminal transaction record,
thus increasing the length of the log by one,
the above two errors will result, except that
the index number of the inserted record will
be wrong (w.h.p.) since there is no next entry
to copy from.

• IfA inserts more than one transaction record,
the same two errors will result.

• If A inserts a checkpoint record, the num-
ber of checkpoints as computed by the
num checkpoints function will be incorrect.
Also, there will be an index number error
just like the case of insertion of a transaction
record.
Further, the database hash will be incorrect
(w.h.p.) owing to the ignorance of ω.

• IfA inserts more than one checkpoint record,
the number-of-checkpoints error will remain.
While that error will be avoided if A inserts
a checkpoint record in place of an existing
checkpoint record, this would be equivalent
to an update of a checkpoint record, a case
we have covered already.

deletion of log record

• If A deletes a non-terminal transaction
record from the log (perhaps to hide a trans-
action), the discrepancy in the sequence of
index numbers will detect it.
Further, the hash value of the next record will
not be correct when chained with its previous
record (the one before the deleted record) and
hence pairOK will return false.

• If more than one non-terminal transaction
records are deleted, the two above errors will
result.

• If A deletes the last entry of the log, the com-
parison of the last index function and the in-
dex of the last log record will detect it.

• If more than one transaction record including
the terminal one is deleted, the above error
will result.

• If A deletes a checkpoint record, then the
number of checkpoints will not match the
expected number. If it is not the terminal
record, then there will also be a gap in the
index numbers.

• The above holds if more than one checkpoint
record is deleted.

insertion/deletion/update of multiple log records

• Clearly inserting, deleting, modifying multi-
ple records is not beneficial owing to the fact
that subsequent records will uncover the er-
ror either through index numbers or the hash
value. So, the remaining strategy is to wipe
out all subsequent records.
Thus A can delete the entire log leaving only
one checkpoint record (without that record,
the logwriter will stop) containing A’s own
database hash. But, owing to ignorance of
ω, that hash will not equal that expected dur-
ing computation of pairOK. Adding more
records after that checkpoint record will also
be detected as shown above.

modification of the database

• IfA alters the database file bypassing the log,
then the database hash computed on the al-
tered database will not equal those recorded
with the checkpoint records (at least one
checkpoint record and database hash is in the
log at all times).
After altering the database file(s), A could in-
sert/replace a checkpoint entry containing the
hash of the altered database. But, owing to
ignorance of ω, A cannot compute the cor-
rect database hash.

End of proof.

3.1. Sensitivity to stronger adversaries

Now, we would like to explore the sensitivity of
our proposed scheme to stronger adversaries, i.e., more
knowledgeable ones than A.

Adversary knows the user password.
It is not unusual to find users choosing passwords that
are easy to guess or after choosing well, failing to guard

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 189



it adequately. Let us model an adversary A′, who, with
the knowledge of the user password, effectively knows
the master key but still does not know the value of ω.
To recap, ω is not available to processes other than log-
writer. Formally, we assume that A′ knows

1. the log structure and how to extract the compo-
nents of a given log entry;

2. how to access the log file on the mobile device;
3. how to access the database files;
4. the master key used for encryption; and
5. the value of last index(), the last index number

used, through decryption using the master key;

but does not know the

1. value of ω, a value accessible only to the logwriter
process.

Corollary: The theorem holds for tampering by adver-
sary A′.
Proof: Scanning the various update situations in the
proof of the theorem, we find that without the knowl-
edge of ω, the adversary fails in all update situations
except in the one involving deletion of the last log en-
try.

But here too, while A′ will be able to decrypt the
index numbers, he will not be able to change the fact
that the function last index will return the index value
of the deleted record and thus will not equal that of the
current last record.

The only way that A′ can compensate for this is
by inserting a new last entry with that index value.
But that entry can neither be a checkpoint record nor a
transaction record as both will be detected owing to the
ignorance of ω.
End of proof.

Adversary knows ω.
Now, consider the case of A′′ who knows the secret
value ω but does not know the master key. Formally,
we assume that A′′ knows

1. the log structure and how to extract the compo-
nents of a given log entry;

2. how to access the log file on the mobile device;
3. how to access the database files; and
4. the value of ω;

but does not know the

1. master key used for encryption and
2. value of last index(), the last index number used,

as it is stored encrypted.

Corollary: The theorem does not hold for tampering by
adversary A′′.
Proof: A′′ can delete the entire log, retaining the very
first checkpoint record but altering its database hash
to reflect the database modified by him or her. Owing
to knowledge of ω, the database hash A′′ computes
will look correct when undo hash is used to compute
logOK.
End of proof.

From the above, we learn that it is neither the user
password nor the master key that provides the critical
knowledge to the adversary: it is the knowledge of ω
that will allow an adversary to tamper and yet remain
undetected, i.e., leave logOK = true.

4. Applications of our Scheme

Malware access to mobile device. A mobile user’s
database can be attacked using malicious code
or malware. With the user unaware, such mal-
ware can make use of the user’s databases via the
database management system. However, with our
logging scheme, all database operations would get
recorded in the log with and possibly stored at the
server, thus enabling future analysis and restora-
tion of the databases to a state close to that before
the infection.

But what if the malware bypasses the log file or
changes the database and deletes relevant entries in
the log file? As we have shown, such attempts can
be detected by computing the logOK predicate.

On the other hand, if the malware deletes the entire
log file, the database itself stops functioning since
the write process on the database gets blocked ow-
ing to the absence of the log.

Theft and subsequent retrieval of mobile device
Mobile devices are susceptible to theft or
misplacement. But when that is followed by
subsequent retrieval or recapture, the owner may
be in a quandary about whether or not data on the
device was accessed by the thieves or handlers
during the interval of loss.

In our scheme, all the data created, stored, and read
are logged, i.e., the create, update, and select
statements are logged. Normally, logging reads
are expensive in terms of performance. But, in
our case, concurrency is not an issue; the only
problem is a space overhead resulting from log en-
tries; but almost the entire log gets transferred to
the server where the problem of space overhead is

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 190



manageable and further, read-only transactions can
be purged after a certain number of days.

A useful optimization here is to include the last
access time of a tuple with the tuple itself. By an-
alyzing the log, analysts can deduce if and when
certain data in the database was accessed by the
thief.

Finally, when and how often the system asks the
user to re-enter the password used to create the
master key is an implementation detail we have ig-
nored here. It can be used to narrow the time inter-
val the thief has from the time of theft to access the
database without being asked for the password.

Restoration using the log The traditional use of a log-
ging mechanism is to restore a database to the last
committed transaction in the event of a crash.

Only a part of the log is stored in the device; hence,
we need to combine the part stored at the server
with the part remaining on the mobile device to ob-
tain a complete valid log and restore the database.
The part on the server is guaranteed to be valid
(i.e., logOK = true). Hence, if the fragment on the
mobile device is valid, then the entire log can be
used to restore the database. Since the log can get
very large, a well-known optimization is to create
a dump of the database at a certain checkpoint and
delete the log prior to that checkpoint. This dump
can be stored encrypted at the server. However, if
this raises privacy concerns, the dump can reside
with the user in his/her own backup storage.

If the mobile device log is invalid (i.e., logOK =
false), then we need to find the earliest entry at
which tampering is detected. The entry just prior
to that one is the last valid entry and hence we can
restore the database state at that computation state.
The restoration can be hastened by taking advan-
tage of any existing dump.

One way of going beyond the earliest entry at
which tampering was detected is to employ file-
system level forensics to retrieve the deleted log
file or deleted database files.

While our logging scheme cannot deliver the
same guarantee as a traditional database manage-
ment system, this is a known problem in mobile
databases; it arises from the absence of continuous
reliable connectivity with a server.

5. Related Work

We are motivated by the work of Snodgrass et al.
[8] who pointed out the need for tamper-proof logging

mechanisms. They proposed an audit log in the form of
a database table with transaction time support; records
would never be deleted, start and stop columns would
specify the status of a record. They suggest the use of
notarization: at database creation the schema is nota-
rized; for each transaction, the data of the transaction is
notarized.

Pavlou and Snodgrass [7] show how forensic anal-
ysis can be conducted after intrusion on an audit log has
been detected; the aim is to find the exact time at which
corruption of the log occurred and time at which cor-
rupted data was originally stored. They introduce a cor-
ruption diagram that provide a graphical representation
of corruption event (CE)s in terms of a temporal-spatial
dimensions of the database.

Our proposal of encrypting log items to preserve
privacy is motivated in part by the work of Miklau et
al. [5] who argue for enhancements to database systems
that allow users to securely manage history in order to
balance the need for privacy and accountability. Crucial
in this regard are questions like how and when data is
retained by the system and who will be able to recover
and analyze it.

We propose rolling back a database for analysis;
this concept was suggested by Olivier [6] who showed
similarities and differences between file system foren-
sics and database forensics and then derived principles
for the latter.

6. Conclusion

To summarize, we have proposed a tamper-
resistant logging mechanism for mobile applications
and mobile databases. We described how the log is im-
plemented using a linked hashing technique and how it
can be used to detect tampering of the log. The nov-
elty of our approach is that only a part of the entire log
is stored and examined at a time. Surprisingly, a se-
cret value is the key to the strength of the system, not
the user password. This approach enables a trustworthy
logging system on a modern mobile device in spite of
its limited storage while retaining the power of the log
as a reliable source for recovery and forensic analysis.
Of course, we have assumed that the DBMS itself is
intact and so the logwriter process works. If an adver-
sary can install his own DBMS, that could be detected
at the server when no log fragments are transferred in a
reasonable amount of time. We are working on an im-
plementation of this mechanism on an existing mobile
operating system.

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 191



7. References

[1] R. Ayers and J. Wayne. PDA foren-
sic tools: An overview and analysis.
http://csrc.nist.gov/publications/nistir/nistir-7100-
PDAForensics.pdf (1 August 2004).

[2] E. Giguere. Why develop mobile database ap-
plications? http://ezinearticles.com/?Why-Develop-
Mobile- Database- Applications?&id=1913994 (23 Jan-
uary 2009).

[3] Y. Luo, O. Wolfson, and B. Xu. The role of auto-id tech-
nologies in mobile e- commerce databases (vision paper).
In IEEE 24th International Conference on Data Engi-
neering Workshop, 2008. ICDEW 2008., pages 108–109,
2008.

[4] S. Mazumdar and A. Paturi. Tamper-resistant database
logging on mobile devices. In Proceedings of the World
Congress on Internet Security (WorldCIS-2011),, 2011.

[5] G. Miklau, B. Levine, and P. Stahlberg. Securing history:
Privacy and accountability in database systems. In Con-
ference on Innovative Data Systems Research (CIDR),
2007.

[6] M. S. Olivier. On metadata context in database forensics.
Digital Investigation, 5:115–123, March 2009.

[7] K. Pavlou and R. Snodgrass. Forensic analysis of
database tampering. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD), pages 109–120, 2006.

[8] R. Snodgrass, S. Yao, and C. Collberg. Tamper detec-
tion in audit logs. In Proceedings of the International
Conference on Very Large Data Bases, volume 30, pages
504–515, 2004.

International Journal for Information Security Research (IJISR), Volume 2, Issue 3, September 2012

Copyright © 2012, Infonomics Society 192


	. Introduction
	. Research Rationale
	. Log Structure
	. Encryption of columns
	. Log Transfer

	. Detection of tampering
	. Sensitivity to stronger adversaries

	. Applications of our Scheme
	. Related Work
	. Conclusion
	. References



