
A Performance Evaluation of Logging in XML Databases Using an Xlog
File for Trust Based Access Control

Norah Farooqi, Siobhan North
Department of Computer Science

The University of Sheffield
Sheffield, United Kingdom

Abstract

Logging is an important process in databases and
is used for recovery and security purposes. Logging
in XML databases has rarely been discussed in the
literature. In this paper the Xlog file is presented as
a dynamic and temporary log file for XML
databases. It is used, not for recovery, but to
calculate user trust values by recording users’ bad
transactions and errors. The novelty in this approach
is that Xlog relates logging and dynamic access
control for XML databases. It is part of a trust based
access control approach to XML databases. It
supports dynamic access control by tracking user
history and is part of a novel approach to solving
security issues for XML databases. Experimental
work has been performed to test the creation and
retrieval processes of Xlog files from a performance
perspective and is described here.

1. Introduction

XML databases have become widely used in
many applications. Due to the recent increase in their
availability, much research has been undertaken to
improve their usefulness. XML databases are a
relatively new kind of database but, like traditional
databases, they require storage strategies and query
languages. However, some important areas have not
been thoroughly investigated. One of these areas is
security in XML databases.

XML databases, like any other databases, can
contain a lot of sensitive and personal data. All data,
but especially important data need to be protected
from unauthorized access either from outsiders or
insiders. The traditional access control models
focused on outsiders but our trust based access
control works for both outsiders and insiders [1, 2,
3]. Trust based access control for XML databases

tracks user operations and behavior over time.
Therefore, there is a need for logging in XML
databases to record users’ transactions.

In this paper, we describe an Xlog file that is used
to record users’ errors and bad transactions. The
Xlog file supports the development of access control
for XML databases depending on trust. It is designed
with a simple structure to be temporary and dynamic
and is written in XML to be flexible and easy to
understand. The Xlog file’s performance has been
tested through creation experiments and experiments
concerning of the retrieval of data.

The remainder of this paper is categorized as
follows. A short literature review of related work
appears in section 2. Section 3 explains the
contributions of this research and describes the
structure of the Xlog file. Section 4 highlights the
main features of the Xlog file from several angles.
Section 5 discusses the experimental work to
evaluate its performance. Finally, section 6
concludes with suggestions for future work and
summarizes the conclusion.

2. Related work

The main purpose of logging in normal databases
is to record transaction information that is used for
recovery when the system crashes and sometimes for
concurrency control [4, 5]; it can also be useful for
security purposes to track malicious transactions in
databases [6]. The main classifications in logging
are: undo logging, redo logging, and undo/redo
logging, all of which are used mainly to restore data
[4, 5]. Logs can be represented as tables in databases
or files. Log files can be written in different
syntaxes, formats, and languages. Reference [7]
suggests that using XML language to create the log
file saves both time and space compared to tables.

International Journal of Intelligent Computing Research (IJICR), Volume 4, Issue 2, June 2013

Copyright © 2013, Infonomics Society 323

3. Xlog file

Taking into account the need for logging in XML
databases, we introduce the Xlog file for XML
databases which unlike conventional log files is
focused on security rather than recovery. Thus the
Xlog file will:

• Support a secure environment for access
control of XML databases.

• Track user operations and behavior by
recording and organizing their actions.

• Produce a log file that can be used to
calculate a trust value that directly affects
user access privileges in a trust based access
control model for XML databases.

The structure of the Xlog file for XML databases

is shown in Figure 1. It is dynamic and temporary as
it is retained only for a certain period of time
depending on the organization’s policy such as a
session, a day, or a week. The Xlog file is written in
XML and is processed as a normal XML file. Its
structure differs from a normal log file, since it
depends on the user identifier instead of time. Using
this structure makes capturing user behavior fast and
easy. It does not need to record time for each
transaction because it is retained for a defined period.

The Xlog file records specific kinds of
transactions and errors. Bad transactions are
identified by rules defined in the operation policy file
that is shown in Figure 2. These rules cover
accessing unauthorized nodes or deleting root and
parent nodes. Each bad transaction is categorized by
its identifier and type. At present, only five basic
types of bad transactions are defined but the rules
can be easily extended to consider other transaction
types depending on the system needs.

Likewise, error rules are defined in the error
policy file shown in Figure 3. They focus on
accessing nonexistent nodes. All errors are classified
by their identifier and type. Like the bad transaction
rules they can easily be extended. Furthermore
although these rules do not depend on the existence
of a schema, a fixed structure for the XML
document, they could easily be extended to cover
problems that affect the XML file structure when
there is a schema.

The Xlog file is a useful tool to calculate trust
values for the users by assigning weights for bad
transactions and errors. These weights are
subsequently used to adjust the users’ trust score.

Figure1. The Xlog file for XML databases

Figure2. The operation policy file.

Figure3. The error policy file.

4. Xlog file features

The purpose of the Xlog file is to record user
behavior. The features of this file are discussed in
this section. The majority of its advantages appear

<Users>
 <User >
 <ID> 30 </ID>
 <Bad Transaction> 1 </Bad Transaction>
 <Bad Transaction> 4 </Bad Transaction>
 <Error> 1 </Error>
 <Error> 3 </Error>
 …
 </User>
</Users>

<Bad Transactions>
 <Transaction >
 <ID> 1 </ID>
 <Type> Read unauthorized node </Type >
 </Transaction>
 <Transaction >
 <ID> 2 </ID>
 <Type> Write unauthorized node </Type >
 </Transaction>
 <Transaction >
 <ID> 3 </ID>
 <Type> Delete unauthorized node </Type >
 </Transaction>
 <Transaction >
 <ID> 4 </ID>
 <Type> Delete root node </Type >
 </Transaction>
 <Transaction >
 <ID> 5 </ID>
 <Type> Delete parent node with existing
children</Type >
 </Transaction>
</Bad Transactions>

<Errors>
 <Error >
 <ID> 1 </ID>
<Type> Read nonexistent node</Type >
 </Error>
 <Error >
 <ID> 2 </ID>
 <Type> Write nonexistent node </Type >
 </Error>
 <Error >
 <ID> 3 </ID>
 <Type> Delete nonexistent node</Type >
 </Error>
</Errors >

International Journal of Intelligent Computing Research (IJICR), Volume 4, Issue 2, June 2013

Copyright © 2013, Infonomics Society 324

through applying a simple structure and using the
XML language to write the Xlog file. Consequently,
the Xlog file adopts the advantages of XML such as
flexibility and simplicity [8, 9, 10]. The important
features are discussed below.

• Temporary: the Xlog file is created to be
used for a certain period depending on the
organization’s needs and policies. The
organization and the system administrator
can define how long the Xlog file may exist.
The period can be a session, a day, or a week.
After using data from the Xlog file to
calculate users’ trust and update their
privileges, the Xlog file is destroyed. This
leads to another feature; the Xlog file
consumes little storage.

• Dynamic: one of the main features of the
Xlog file is that it is dynamic and updated
regularly. It reflects misuse as soon as it
occurs. This feature is derived from it
transient nature. The Xlog file is temporary;
it is amended to record each fresh transaction
and thus contains all recent data.

• Consumes little storage: as a result of
temporary and dynamic structure, the Xlog
file contains only recent processes.
Furthermore this storage is only retained for
a defined period.

• Flexible: the Xlog file gains its flexibility in
that it is written in XML which is
intrinsically flexible. XML gives the users
the freedom to create their own tags
according to their needs. Even the Xlog file
structure defined in the previous section, can
be changed by the administrator and tags can
be amended to serve particular needs.

• Simple: the Xlog file is created to be simple
and easy to share between different
platforms. Through using the XML language,
the Xlog file becomes easy to use and
understandable for both humans and
machines.

• Interrelated with other files: the Xlog file can
be related easily and smoothly with the
operation policy file and the error policy file.
The content refers to other files by using
reference identification <ID>. The
organization can extend errors and bad
operations types in the policy files and these
can be automatically related to and recorded
in the Xlog file.

• Consistent environment: since the motivation
of creating the Xlog file is to serve XML
databases’ security, the Xlog file is obviously
best written in the XML language.

5. Experiments results

In this section, the experiments to evaluate the
performance of the Xlog file for XML databases are
described. These experiments check the Xlog file
performance speed over time from two perspectives.
The first is to test the creation process of the Xlog
file. The second perspective focuses on evaluating
the reading process and retrieval of data. Both
perspectives were implemented in three parts
depending on the type of processes in the Xlog file.
These viewpoints were evaluated in three ways; with
errors only, bad transactions only, and a mixture of
both errors and bad transactions. Each of these parts
was tested in different sizes according to the number
of processes in the Xlog file.

The Xlog file experiments were executed on a PC
with 2.40 GHz Intel ® Core ™ i5 CPU, 4 GB of
main memory, and Windows 7 operating system.
The processes of Xlog file creation and retrieval data
are run using Java Language (JDK 1.7.0) and
NetBeans IDE 7.0.1 platform framework. These
experiments were performed with various Xlog files
that had different numbers of errors, bad
transactions, or both errors and bad transactions.

5.1. Evaluating the creation process of the
Xlog file

The main goal of the creation experiments is to
measure and evaluate the time required to create the
Xlog file and record processes. As mentioned in the
previous section, this experiment was executed with
three types of Xlog files. The first file type consists
of errors. The second file type includes only bad
transactions. The third has errors with bad
transactions. Then these three Xlog files were tested
in several steps depending on the number of recorded
processes. The first and second Xlog files start from
10 processes with either errors or bad transaction
until they reach 100 processes. In each step, the
number of processes is increased by 10. Since the
third Xlog file has both errors and bad transactions,
the number of process is shared equally between
them. This third Xlog file runs from 20 to 200
processes. The number of processes is increased by
10 errors and 10 bad transactions each step.

The results of creating the first Xlog file that
contains errors only and the second Xlog file that
includes only bad transactions were almost identical.
This is because the time consumed for recording the
same number of processes in different Xlog files is
similar to each other even if the type of process is
different. This means the creation of the Xlog file is
affected by the number of recorded processes
regardless of their type. The required time to create

International Journal of Intelligent Computing Research (IJICR), Volume 4, Issue 2, June 2013

Copyright © 2013, Infonomics Society 325

the Xlog file with 10 processes with either error or
bad transactions is 122 milliseconds. This time
increases regularly by around 50 milliseconds when
the number of errors or bad transactions is raised by
10 processes each time. When the number of either
errors or bad transactions is 100 processes, the time
reaches around 566 milliseconds.

The time consumed to create the third Xlog file is
increased by around 100 milliseconds when the
number of processes is increased by 20 processes. At
the start point, when the number of errors is 10 and
the number of bad transactions is 10, the time for
creating the Xlog file with these 20 processes is 186
milliseconds. The creation time grows markedly until
reaching 1098 milliseconds when there are 200
processes, which are 100 errors and 100 bad
transactions. Figure 4 shows the result of creating the
Xlog file with both errors and bad transactions.

Figure4. The required time for the Xlog file
with both errors and bad transactions.

5.2. Evaluating the reading process of the
Xlog file

The retrieval experiments were used to evaluate
the performance of reading the Xlog files. These
experiments were tested with the same procedures as
the creation experiments. The experiments were
executed by using the same test factors, which are
the process types and the number of processes.

The time required for reading the Xlog files that
contained either only errors or only bad transactions
is similar. The time starts increases from 79
milliseconds to read 10 processes up to 103
milliseconds to read 100 processes. The time is
increased by around four milliseconds when the
number of errors or bad transaction is increased by
10 processes. The consumed time to read the third
Xlog file type, which has both errors and bad

transactions, is increased by around six milliseconds
when the number of processes grows by 20
processes. The time to access the third Xlog file
starts from 82 when the number of processes is 20
and ends by 125 milliseconds when the number of
processes is 200. Figure 4 explains the results of
reading and accessing the Xlog file when half of the
processes are errors and the other are bad
transactions.

The results of creating and reading the Xlog file
experiments explain some points. In general, the time
consumed for the reading process is always less than
the time for creation. The creation and retrieval
processes are not affected by the type of processes,
whether they are errors or bad transactions. Both
experiments are affected markedly by changing the
number of processes in each step.

6. Conclusion and future works

The Xlog file consists of a dynamic and
temporary log file for XML databases. This approach
focuses on using logging for security issues related
to access control. The XML log file is a part of trust
based access control for XML databases. It is used to
evaluate user behavior by recording user transactions
and errors. The rules for bad transactions and errors
are defined and can be extended according to need.

The performance of the Xlog file is evaluated
during both creation and retrieval. The experiments
were executed with errors only, bad transactions only
or both. These three ways were run with several sizes
of file. The experimental results show that the
reading process is faster than the creation process.
Both creation and reading processes are affected by
the increment in the number of processes in the Xlog
file. The maximum number of errors and bad
transactions reaches 200 processes. Due to temporary
and dynamic features of the Xlog file, there is no
need to go higher.

The logging in XML databases is important to
provide a secure environment. This topic needs
further investigation and more work. Logging could
be extended to cover the traditional features of the
log file that is used for recovery purposes in
relational databases to XML databases.

7. Acknowledgements

This paper is supported by Umm Al Qura

University on behalf of the Higher Ministry of
Education of Saudi Arabia.

0

200

400

600

800

1000

1200

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

T
im

e
(m

ill
is

ec
on

ds
)

The number of recorded processes

Creation
Reading

International Journal of Intelligent Computing Research (IJICR), Volume 4, Issue 2, June 2013

Copyright © 2013, Infonomics Society 326

8. References

[1] N. Farooqi and S. North, “Logging in XML Databases:
Xlog File for Trust Based Access Control”, World
Congress on Internet Security (WorldCIS-2012), IEEE
Xplore, Ontario, Canada, 2012, PP. 174-175.

[2] N. Farooqi and S. North, “Trust Based Access Control
for XML Databases”, The 6th International Conference for
Internet Technology and Secured Transactions
(ICITST),IEEE Xplore, Abu Dhabi, UAE, 2011, PP. 764-
765.

[3] N. Farooqi and S. North, “Developing a Dynamic Trust
Based Access Control Model for XML Databases”,
Department of Computer Science Research Memoranda
CS-11-09, University of Sheffield, UK, 2011.

[4] H. Molina, J. Ullman and J. Widom, Database Systems
The Complete Book, 2nd ed, Pearson International Edition,
USA, 2009.

[5] R. Elmasri and S. Navathe, Fundamentals of Database
Systems, 5th ed, Pearson International Edition, USA, 2007.

[6] F. Etho, K. Takahashi, Y. Hori and K. Sakurai, “Study
of Log File Dispersion Management Method”, 10th
IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT), IEEE Computer Society, Seoul,
Korea,2010. pp. 371-374.

[7] F. Wang, X. Zhou and C. Zaniolo, “Using XML to
Build Efficient Transaction-Time Temporal Database
Systems on Relational Databases”, The 22nd International
Conference on Data Engineering (ICDE), IEEE Computer
Society, Atlanta, Georgia, 2006, pp.131-134.

[8] E,Ray, learning XML, O’REILLY.

[9] W3School, “Introduction to XML”,
http://www.w3schools.com/xml (8-9-2012).

[10] W3C, “What is XML?”,
http://www.w3.org/standards/xml/core (9-9-2012).

International Journal of Intelligent Computing Research (IJICR), Volume 4, Issue 2, June 2013

Copyright © 2013, Infonomics Society 327

