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Abstract

Crypton is a 12-round block cipher proposed as an AES
candidate and Crtpton v1.0 is the revised version. In this
paper, we present two related-key impossible differential at-
tacks to reduced-round Crypton and Crypton v1.0. By care-
fully choosing the relations of keys, constructing some 6-
round related-key differential trials and using some obser-
vations on the cipher, we first break 9-round Crypton v1.0
and Crypton with 256 bit keys. This fact reflects some weak-
nesses of the key schedule algorithms of the two versions of
Crypton when using 256 bits user keys.

   The cipher Crypton[1] was proposed as a candidate al-
gorithm for the AES. Since the competition, Crypton have 
attracted much attention for its several favorable features. 
For example, the encryption and decryption processes are 
strictly identical, the structure is highly parallelizable and 
flexible. Moreover, Crypton provides some provable secu-
rity against differential and linear cryptanalysis. However, 
due to its too simple round key computations, some minor 
weaknesses were found by Serge Vaudenay etc. To fix 
these weaknesses in the key schedule and enhance the 
security, the designers introduced a modified Crypton[2] 
with a new key schedule and new S-boxes. This new 
version denoted by Crypton v1.0. The new key schedule 
introduces bit and word rotations and round constants for 
each round key. Be-sides, the new key schedule runs much 
faster than one-block encryption.

Impossible differential cryptanalysis is one of the most
powerful tool used for block cipher cryptanalysis. Proposed
by Biham and Knudsen respectively, this method was first

applied to the cipher DEAL[3] and later to Skipjack[4]. The
main idea is to specify a differential of probability zero over
some rounds of the cipher. Then one can derive the right
key by discarding the keys which lead to the impossible dif-
ferential. Related-key attacks[5] allow the cryptanalyst to
obtain plaintext-ciphertext pairs by using unknown but re-
lated keys. By observing the possible weaknesses of the en-
cryption and key schedule algorithms, the attackers choose
appropriate relation between keys and then predict the en-
cryptions under these keys. The combination of the above
two attacks is called related-key impossible differential at-
tack.

The main cryptanalytic results obtained on Crypton so
far are as follows. In FSE’99, H’Halluin et al. proposed
a modified square attack for 6-round Crypton[6]. In Asi-
acrypt’99, Seki and Kaneko found that 4 rounds of Cryp-
ton has impossible differential, using this fact they gave an
attack to 5-round Crypton[7], and later this result was im-
proved to 6-round by Cheon et al. in ICISC 2001[8]. A
stochastic attack presented by Minier and Gilbert in FSE
2000 can work on 8-round Crypton, however, Crypton v1.0
can resist this attack very well. In 2010, Mala et al. de-
scribed two new impossible differential attacks[10] on 7-
round Crypton by using a 4-round impossible differential.

In this paper, we study related-key impossible differen-
tial attacks on both Crypton and Crypton v1.0 which are
distinguished by key schedules and S-boxes. The attacks
exploit the effect of the difference of a pair of plaintexts
under two related keys with a certain key differential. Due
to the special structure of the key schedules, we can ex-
ploit some 6-round related-key impossible differentials of
Crypton with 256 bit user keys. By constructing 6-round
related-key impossible differentials from the inner of the
first round and starting the attacks from the very beginning,
using some observations of diffusion layer to accelerate fil-
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tration of pairs, we mount the attack on 9-round Crypton
and Crypton v1.0 with 256 bit user key. The first proposed
attack requires 2124.5 chosen plaintexts and 2176.3 9-round
Crypton encryptions. The second proposed attack is a data-
time trade off of the first one. It requires 2105 chosen plain-
texts and 2243.8 9-round Crypton encryptions. Both the at-
tacks can retrieve the whole of the 9th round subkey.

The paper is organized as follows: Section 2 briefly in-
troduces some notations and the description of Cryptons. In
section 3, we describe some 6-round related-key impossible
differentials. Then attacks on Crypton and Crypton v1.0 are
discussed in section 4. Section 5 gives a second attack sce-
nario. Section 6 concludes the paper and summarizes our
results.

2 Background

2.1 Outline of Crypton

Crypton is a 128-bit block cipher supports key sizes up
to 256 bits. The standard number of rounds is 12. Each
round employs a SPN (Substitution-Permutation Network)
structure and processes 16 bytes block. Let us represent the
128-bit block A as a 4× 4 matrix of bytes, left 4× 4 matrix
is double index and the right one is single index.

A =




a0,3 a0,2 a0,1 a0,0

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0







3 2 1 0
7 6 5 4
11 10 9 8
15 14 13 12




Crypton uses 6 elementary transformations.

• γo and γe are byte-wise non-linear substitutions which
are applied to odd rounds and even rounds, respec-
tively.

• πo and πe are linear transformations that act on odd
rounds and even rounds, respectively. The two bit per-
mutations mix each byte column of 4 × 4 byte array
using four masking bytes mi’s given by

m0 = 0xfc, m1 = 0xf3,m2 = 0xcf,m3 = 0x3f.

We denote “.”and “⊕”bit-wise logical operations for
AND and XOR, respectively. πo is given as follows:

Bi,j = ⊕3
k=0(Ak,j ·m(i+j+k) mod 4),

πe is given as show below.

Bi,j = ⊕3
k=0(Ak,j ·m(i+j+k+2) mod 4).

Both the branch number of πo and πe are 4. Note that
π−1

o = πo , π−1
e = πe.

• τ is a byte transposition, it simply moves the byte at
(i, j) position to (j, i) position, i.e.,B = τ(A) ⇔
bi,j = aj,i.

• σK is a bit-wise key XOR with key K.

Let Ki be the i-th encryption round key derived from a
user key K using the key schedule. The block cipher Cryp-
ton can be described as φe ◦ ρeK12 ◦ ρoK11 ◦ · · · ◦ ρeK2 ◦
ρoK1◦σK0 , where odd round function ρoK and even round
function ρeK are defined by ρoK = σK ◦ τ ◦ πo ◦ γo

and ρeK = σK ◦ τ ◦ πe ◦ γe. Linear transformation
φe = τ ◦ πe ◦ τ is used after the last round. In the same
way, define φo = τ ◦ πo ◦ τ .

Modified Crypton (i.e. Crypton v1.0) features two
changes which we state as follows.

1. The nonlinear transformations γo and γe use two S-
boxes instead of only one. This doesn’t influence our attack
since we only use the fact that a S-box is a bijective map.

2. The key schedule is changed. The generation of the
round keys is more complex then Crypton. This influences
our attack since attacks in this paper have a close relation
with the key schedule.

We outline the key schedules of both Crypton and Cryp-
ton v1.0 in Appendix A. More detail we refer [1] and [2]. In
some cases, we don’t distinguish Crypton and Crypton v1.0
when describing common features.

2.2 Notations

In the rest of this paper, we will use the following nota-
tions:

Let P denotes plaintext and C denotes ciphertext. xγ
i ,

xπ
i , xτ

i and xσ
i denote the intermediate values after the ap-

plication of γ(γo or γe), π(πo or πe), τ and σ operations of
round i, respectively. Ki denotes the subkey of round i, and
the initial whitening subkey is K0.

In some cases, for reducing the attack complexity, the
order of the operations in the same round is changed. We
can rewrite the round function σK ◦ τ ◦ πs ◦ γs by τ ◦ πs ◦
σKeqγs, s ∈ {o, e}, which is done by replacing the subkey
K with an equivalent subkey Keq, where Keq = π−1 ◦
τ−1(K).

We denote the lth column of xi by xi,col(l), denote
columns m and n of xi by xi,col(m,n). In the same way,
we can denote the row(s) of xi. For example, xi,row(1) in-
cludes bytes 4, 5, 6 and 7, xi,col(1) includes bytes 1, 5, 9
and 13.

For a 4-byte word a = (a3, a2, a1, a0), we call a0 the
least byte of a and a3 the most byte of a. a¿n denotes
left rotation of a by n bits positions, and a¿bn

denotes left
rotation of each byte in a 32-bit word a by n bits positions.
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Table 1. nij values[10]
i j

0 1 2 3 4
0 1 0 0 0 0
1 0 0 0 48 972
2 0 0 108 5760 384,282
3 0 48 5760 1,024,800 65,294,892
4 0 972 384,283 65,294,892 4,162,570,479

2.3 Two observations on Crypton

In [10], two observations on diffusion layer of Crypton
are given. We list them in following since they are also im-
portant to our attacks.
Observation 1. Let nij be the number of 4-byte words with
i non-zero bytes that after the application of π are converted
to 4-byte words with j non-zero bytes. Values nij obtained
by computer experiment are given in Table 1. The proba-
bility that π transformation transfers a 4-byte word with i
non-zero bytes in fixed positions into a word with j non-

zero bytes in fixed positions is equal to pij = nij/Ci
4Cj

4
(28−1)i .

Observation 2. The linear transformation πe ◦ πo is equiv-
alent to a byte permutation. Let C = πe ◦ πo, then
Crow(i) = Arow(i+2) mod 4.

From observation 2, we can easily deduce that πe ◦ πo is
equal to πo ◦ πe since πe ◦ πo = π−1

e ◦ π−1
o = (πo ◦ πe)−1

and (πo ◦ πe)−1 = πo ◦ πe. Therefore, when the equiva-
lent round is used in the last round of Crypton reduced to r
rounds, the intermediate value xσ

r is a byte permutation of
the ciphertext.

3 6-round related-key impossible differen-
tials of Crypton

In this section, we introduce some 6-round related-key
impossible differentials of Crypton-256.

In the key schedule of Crypton, the 256-bit keys are split-
ted into two 128-bit words, then round transformations are
applied to the two words. Since the round transformations
are permutations of the 128-bit words, one can easily ob-
tain the inputs given the outputs. Therefore, we can trace
the key relations after the round transformations if 256-bit
user key is used. However, when user key with other length
is used, some zeros are padded to make K to 256 bits, which
will confine the relations of the keys. This property makes
Crypton-256 more susceptible to related-key attacks than
Crypton with other length key. In this paper, we only study
the security of 256-bit key version of Crypton against the
related-key impossible differential cryptanalysis.

3.1 6-round impossible differentials of Crypton
v1.0-256

For Crypton v1.0, we choose two related keys with dif-
ference of U and V as follows:

∆U
′
=




a 0 0 0
a 0 0 0
a 0 0 0
a 0 0 0


 , ∆V

′
=




a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Table 2. Round key differences of Crypton
v1.0

Round ∆ki,row(0) ∆ki,row(1) ∆ki,row(2) ∆ki,row(3)

0 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
1 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
2 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
3 (0,0,0,0) (b,0,0,0) (0,0,0,0) (0,0,0,0)
4 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
5 (0,0,0,0) (0,0,0,0) (0,0,0,b) (0,0,0,0)
6 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
7 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,b,0,0)
8 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
9 (0,c,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

a,b and c are nonzero values, and b = a¿2, c = a¿4.

Hence, the round key differences for the first 9 rounds
are presented in Table 2, which will be used in our attacks
later.

Using the above key relation, a 6-round related-key im-
possible differential can be built as Fig. 1. Firstly, a 4-round
related-key impossible differential differential can be built
with probability 1 in the forward direction, then a 2-round
related-key differential with probability 1 in the reverse di-
rection, where the intermediate differences contradict each
other. We still use the notations introduced by [10], i.e. the
boxes with a black circle refer to bytes with non-zero differ-
ence and white boxes with “?”refer to bytes with unknown
difference and white boxes refer to bytes with zero differ-
ence. Notice that after applying transformation π, the posi-
tion of each “?”is not fixed.

3.2 6-round impossible differentials of Crypton -
256

For Crypton, we choose two related keys with the fol-
lowing difference of Vi.

(∆Ve[3], . . . , ∆Ve[0])
T =




a 0 0 0
a 0 0 0
a 0 0 0
a 0 0 0


 ,

(∆Ve[7], . . . , ∆Ve[4])
T =




a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

The round key differences of Crypton-256 for the first 9
rounds are presented in Table 3.
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a
K1 K2

b

?

-1-1
-1

Contradiction!

-1

K3

K4

K5

K6

Figure 1. 6-round related-key impossible dif-
ferential of Crypton v1.0

Table 3. Round key differences of Crypton
Round ∆ki,row(0) ∆ki,row(1) ∆ki,row(2) ∆ki,row(3)

0 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
1 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
2 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
3 (a,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
4 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
5 (0,0,0,a) (0,0,0,0) (0,0,0,0) (0,0,0,0)
6 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
7 (0,0,0,a) (0,0,0,0) (0,0,0,0) (0,0,0,0)
8 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
9 (0,a,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

a is a nonzero value.

In the same way, we can obtain the related-key impossible
differentials one of which is shown in Fig. 2.

4 A 9-round related-key impossible differen-
tial attack

In this Section, we describe attacks of two versions of
Crypton reduced to 9 rounds. The attacks are based on the
above 6-round related-key impossible differentials with ad-
ditional one round at the beginning and two rounds at the
end. In the 8th round and 9th round, we use their equivalent
round functions. The attacks on Crypton v1.0 and Cryp-
ton are depicted in Fig.3 and Fig.4 respectively. We only
present the attack procedure of Crypton v1.0. The attack on
Crypton is quite similar.

a

K1 K2

a

-1-1
-1

Contradiction!

-1

K3

K4

K5

K6

Figure 2. 6-round related-key impossible dif-
ferential of Crypton

1 3

3 4 32

11.52

C C p

-1 -1 -1
K7

b

8

eqK

82

-1 -1

4241 41

642

p p p

-1

h
9

eqK 1 1 1

o o h

a

a
K0

6-round related key 

impossible differential

2 4 and  are nonzero values, , is the most byte of (0,0, ,0)T
o

a b b a h a

Figure 3. 9-round related-key impossible dif-
ferential attack on Crypton v1.0
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1 3

3 4 32

11.52

C C p

-1 -1 -1
K7

a

8

eq
K

82

-1 -1

4241 41

642

p p p

-1

9

eq
K 1 1 1

o o

a

a
K0

6-round related key 

impossible differential

is nonzero valuea

Figure 4. 9-round related-key impossible dif-
ferential attack on Crypton

4.1 Attack procedure

Precomputation: For all the 232 possible pairs of values
of (xτ

1,col(3), x
′τ
1,col(3)) with difference (a, 0, 0, 0), compute

4 bytes values in byte 0,4,8,12 of plaintexts. Store the pairs
of 4-byte values in a hash table S indexed by the XOR
difference in these bytes.

The attack algorithm is as follows:
1. Take 2n structures of plaintexts such that in each

structure, plaintexts have fixed values in all bytes but col-
umn 0, thus we get 2n+32 plaintexts and 2n+63 plaintext
pairs. Choose plaintext pairs (P, P

′
) whose corresponding

ciphertext pairs (C,C
′
) have zero difference at the three

bytes (1,11,14) and have difference of h in byte 4, where h
is the first byte of πo(0, 0, a¿4, 0)T . From observation 2,
we can obtain (xσ

9 , x′σ9 ) from (C, C ′). The expected num-
ber of such pairs is 2n+63 × 2−8×4 = 2n+31.

2. For all pairs (xσ
9 , x′σ9 ), compute x∗σ9 = x′σ9 ⊕

πo(0, 0, a¿4, 0)T to obtain new pairs (xσ
9 , x∗σ9 ).

3. Guess the 32-bit value for Keq
9,row(1), and for each

guess, partially decrypt the pairs (xσ
9,row(1), x

∗σ
9,row(1)) to

obtain (xσ
8,col(1), x

′σ
8,col(1)). Choose pairs whose difference

∆xσ
8,col(1) is nonzero at byte 9 and zero at bytes 1,5,13.

From Observation 1, the probability of such a difference
is equal to p41 ' 2−24, thus the expected number of the
remaining pairs is 2n+31 × p41 = 2n+7.

4. Guess the 32-bit value for Keq
9,row(2), and for each

guess, partially decrypt the remaining pairs through one
round to obtain (xσ

8,col(2), x
′σ
8,col(2)). Choose pairs whose

difference ∆xσ
8,col(2) is nonzero at bytes 10, 14 and zero

at bytes 2, 6. The probability of such a difference is equal
to p42 ' 2−16, thus the expected number of the remaining

pairs is 2n+7 × p42 = 2n−9.
5. Guess the 32-bit value for Keq

9,row(3), and for
each guess, partially decrypt the remaining pairs to ob-
tain (xσ

8,col(3), x
′σ
8,col(3)). Choose pairs whose difference

∆xσ
8,col(3) is nonzero at byte 11 and zero at bytes 3,7,15.

The probability of such a difference is also equal to p41 '
2−24, thus the expected number of the remaining pairs is
2n−9 × p41 = 2n−33.

6. Guess the 8-bit value for Keq
8 in byte 14, and for

each guess, partially decrypt the remaining pairs to obtain
(xσ

7 , x′σ7 ) in byte 14. Choose pairs whose difference ∆xσ
7

in byte 14 is b, where b = a¿2. The probability of such a
difference is equal to 2−8, thus the expected number of the
remaining pairs is 2n−33 × 2−8 = 2n−41.

7. Guess the 24-bit value for Keq
8 in bytes 9,10,11, and

for each guess, partially decrypt the remaining pairs to ob-
tain ∆xγ

6,col(2). Choose pairs whose difference ∆xγ
6,col(2)

has two active bytes, one of them is in byte 2, and the
location of the other difference is not important. Accord-
ing to Observation 1, the probability of such a difference
is C1

3 · p23. Besides, the location of three nonzero differ-
ences in ∆xπ

6,col(2) is also arbitrary (if choose different 3
nonzero positions, the other steps must be changed accord-
ingly), therefore the probability is equal to C1

3 · C3
4 · p23 '

2−11.5. Thus the expected number of the remaining pairs is
2n−41 × 2−11.5 = 2n−52.5.

8. Initialize a list A of the 232 possible values of the
bytes K0,col(0).

9. For each of the 2n−52.5 remaining plaintext pairs,
compute ∆P = P ⊕ P

′
. If the bin ∆P in S is nonempty,

access this bin. For each pair (x, y) in this bin, remove from
the list A the value Pcol(0) ⊕ x. The probability that a sub-
key Pcol(0) ⊕ x be removed by a remaining pair is about
2−32. We expect each pair deletes one subkey candidate on
average.

10. If A is not empty, output the values in A along with
the guess of Keq

9,row(1,2,3) and Keq
8,(9,10,11,14).

4.2 Analysis of the attack complexity

In this attack, 16 bytes subkey Keq
9,row(1,2,3) and

Keq
8,(9,10,11,14) should be guessed. After the filtering in step

7, there remains about 2n−52.5 plaintext pairs. After analyz-
ing one of such pairs, the probability that a wrong 16-byte
key value survives the elimination process is 1−2−32. Thus
after analyzing all the 2n−52.5 pairs, only about 28×16(1 −
2−32)2

n−52.5
wrong key guess remain. If n = 92.5, the ex-

pected number is much smaller than 1, and we can expect
that only the right subkey will remain. Therefore, the num-
ber of required plaintexts is 2n+32 = 2124.5.

The time complexity can be computed as follows. Step 3
requires about 2×232×2n+31 = 2156.5 computations which
equivalent to 2156.5 × 4

16 = 2154.5 one round encryptions.
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Step 4 requires about 2× 232+32× 2n+7× 4
16 = 2162.5 one

round encryptions. Step 5 requires about 2 × 232+32+32 ×
2n−9 × 4

16 = 2178.5 one round encryptions. Step 6 requires
about 2 × 232+32+32+8 × 2n−33 × 1

16 = 2160.5 one round
encryptions. Step 7 requires about 2 × 232+32+32+8+24 ×
2n−41 × 4

16 = 2177.5. At last, step 9 requires about 2 ×
2128 × 2n−52.5 = 2170 memory accesses.

For recovering the other four bytes of Keq
9 , a scenario

similar to the above attack can be performed. As described
in step 7, we expect 3 nonzero positions in ∆xπ

7,col(2) is
changed, and we change the other steps accordingly. This
attack complexity is the same as the above one. Hence the
time complexity is about 2178.5 × 2 = 2179.5 for obtaining
the whole Keq

9 .
Consequently, this attack requires about 2124.5 chosen

plaintexts and less than 2179.5 × 1
9 ' 2176.3 encryptions of

9-round Crypton v1.0.
Both the procedure and the complexity of the attack on

Crypton-256 are just the same with the above one. So we
omit the details here.

5 A second attack scenario

In the following, we will give another 9-round attack on
Crypton v1.0. This attack is a data-time trade off of the first
one. We present the attack in Fig. 5.

42

32

42

2

p p

-1 -1 -1
K7

8

eq
K -1 -1

4 64

42( ) 2p

-1

9

eq
K 1 1 1

o o

a

a
K0

6-round related key 

impossible differential

Figure 5. a second 9-round related-key impos-
sible differential attack on Crypton v1.0

In this attack, the precomputation is the same as the first
attack. The difference lies in the way of tracing the prop-
agation of ciphertexts. We can use all the 2n+63 plaintext
pairs in this attack. All the 16 bytes of Keq

9 and a half of
Keq

8 in bytes 8, 9, 10, 11, 12, 13, 14, 15 need to be guessed.
We first guess each row of Keq

9 and partially decrypt
each row of pairs (xσ

9 , x∗σ9 ), then check whether only the
difference in row 2 and row 3 are nonzero. This filtering is

done by multiplying four p42 ' 2−16 conditions. Guess the
4 bytes of Keq

8 in bytes 8,9,10,11, and partially decrypt the
remaining pairs to get ∆xγ

6,col(1). Choose pairs whose dif-
ference ∆xγ

6,col(1) has two active bytes (one with fixed po-
sition and the other is flexible), this probability is 3 × p42.
Guess another four bytes of Keq

8 in bytes 12,13,14,15 to
calculate ∆xσ

7,row(3), then reverse ∆xσ
7,row(3)⊕{0, b, 0, 0}

to get ∆xσ
6,col(0), where b = a¿2, in the same way, choose

pairs whose difference ∆xγ
6,col(1) has two active bytes. This

probability is p42. After this filtering, the remaining cipher-
text pairs can be used to discard wrong subkey guesses.

In this attack, we guess a total of 192 subkey bits, but
only a portion of 2−96 of the pairs can be used to dis-
card wrong subkey guesses. By choosing 2n structure, we
can get 2n+32 plaintexts and 2n+63 plaintext pairs. Af-
ter analyzing all the 2n−33 pairs, only about 2200(1 −
2−32)2

n+63−96
wrong key guess remain. If n = 73, the

expected number is much smaller than 1, and we can ex-
pect that only the right subkey will remain. Therefore, the
number of required plaintexts is 2n+32 = 2105. The time
complexity is dominated by the step of guessing Keq

8 in
bytes 12,13,14,15, in this step, 2192 bits subkey should be
guessed, the number of remaining pairs is 2n+63−80. There-
fore, the time complexity is 2 × 2192+56 × 4

16 = 2247 one
round encryptions which is equivalent to 2247 × 1

9 = 2243.8

encryptions of 9-round Crypton. For obtaining the whole
Keq

9 , the time complexity should be doubled.

6 Summary

This paper considers impossible differential cryptanal-
ysis under related key model firstly. Different from most
of the previous results on Crypton with 128-bit user keys,
our targets are Crypton and Crypton v1.0 with 256-bit user
keys. By choosing proper differences of the related keys,
we constructed 6-round related-key impossible differentials
of Crypton and Crypton v1.0, and proposed 9-round attacks
on the two versions of Crypton-256.

In these attacks, several techniques, including appro-
priate selection of additional rounds and using hash table,
made the attack effective. Besides, the chosen related-key
difference made our attack start from the very beginning of
the cipher, the property of the diffusion layer made us obtain
intermediate values from ciphertexts directly. These attacks
retrieve the whole of the 9th round subkey of two versions
of Crypton-256.

This work is the extend version of “Related-key im-
possible differential cryptanalysis on Crypton and Cryp-
ton v1.0”which appears in WorldCIS 2011, and it is sup-
ported by the Natural Science Foundation of China (No:
60803156, 61070215).
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A Appendix

A.1 Key Schedule of CRYPTON

The key schedule expands the user key K into 13 32-
bit round keys. Firstly prepend as many zeros to K as
need to make K to 256 bits. Then convert the resulting
user key into 8 32-bit words U [i](0 ≤ i ≤ 7): U [i] =

Table 4. Round keys of the first 9 rounds of
Crypton

Ke[0] = Ee[0] Ke[4] = Ee[4]
Ke[1] = Ee[1] Ke[5] = Ee[5]
Ke[2] = Ee[2] Ke[6] = Ee[6]
Ke[3] = Ee[3] Ke[7] = Ee[7]
Ke[8] = ROL(Ee[0], 8) Ke[12]= Ee[4]⊕RC0

Ke[9] = Ee[1]⊕RC0 Ke[13]= ROL(Ee[5], 16)
Ke[10]= ROL(Ee[2], 16) Ke[14]= Ee[6]⊕RC0

Ke[11]= Ee[3]⊕RC0 Ke[15]= ROL(Ee[7], 24)
Ke[16]= ROL(Ee[0], 8)⊕RC1 Ke[20]= ROL(Ee[4], 8)⊕RC0

Ke[17]= ROL(Ee[1], 24)⊕RC0 Ke[21]= ROL(Ee[5], 16)⊕RC1

Ke[18]= ROL(Ee[2], 16)⊕RC1 Ke[22]= ROL(Ee[6], 16)⊕RC0

Ke[19]= ROL(Ee[3], 8)⊕RC0 Ke[23]= ROL(Ee[7], 24)⊕RC1

Ke[24]= ROL(Ee[0], 24)⊕RC1 Ke[28]= ROL(Ee[4], 8)⊕RC02

Ke[25]= ROL(Ee[1], 8)⊕RC02 Ke[29]= ROL(Ee[5], 8)⊕RC1

Ke[26]= ROL(Ee[2], 8)⊕RC1 Ke[30]=ROL(Ee[6], 16)⊕RC02

Ke[27]= ROL(Ee[3], 8)⊕RC02 Ke[31]= Ee[7]⊕RC1

Ke[32]=ROL(Ee[0], 24)⊕RC13 Ke[36]=ROL(Ee[4], 24)⊕RC02

Ke[33]= Ee[1]⊕RC02 Ke[37]= ROL(Ee[5], 8)⊕RC13

Ke[34]= ROL(Ee[2], 8)⊕RC13 Ke[38]= ROL(Ee[6], 8)⊕RC02

Ke[35]=ROL(Ee[3], 24)⊕RC02 Ke[39]= Ee[7]⊕RC13

k4i+3k4i+2k4i+1k4i, and perform the following:

(Ve[3], Ve[2], Ve[1], Ve[0])
T

= (τ ◦ γo ◦ σP ◦ πo)((U [6], U [4], U [2], U [0])
T

)

(Ve[7], Ve[6], Ve[5], Ve[4])
T

= (τ ◦ γo ◦ σP ◦ πo)((U [7], U [5], U [3], U [1])
T

)

T0 = Ve[0]⊕ Ve[1]⊕ Ve[2]⊕ Ve[3]

T1 = Ve[4]⊕ Ve[5]⊕ Ve[6]⊕ Ve[7]

Ee[i] = Ve[i]⊕ T1 for i = 0, 1, 2, 3

Ee[i] = Ve[i]⊕ T0 for i = 4, 5, 6, 7

The first 9 round keys with initial key are given in table 4,
where P , Q, RC0, RC1, RC02 and RC13 are constants we
don’t care about.

A.2 Key Schedule of CRYPTON v1.0

256 bit user key K = k31 . . . k1k0 are splited into U
and V such that U [i] = k8i+6k8i+4k8i+2k8i and V [i] =
k8i+7k8i+5k8i+3k8i+1 for i = 0, 1, 2, 3. Then compute
Ee[i] using round transformations with all-zero key as

U
′
= ρo(U), V

′
= ρe(V )

Ee[i] = U
′
[i]⊕ T1, Ee[i + 4] = V

′
[i]⊕ T0,

where T0 = ⊕3
i=0U

′
[i] and T1 = ⊕3

i=0V
′
[i].

1. compute the round keys for the first 2 rounds as

Ke[i]←Ee[i]⊕ Ce[0]⊕MCi,

Ke[i + 4]←Ee[i + 4]⊕ Ce[1]⊕MCi, for 0 ≤ i ≤ 3.

2. for rounds r=2,3,. . . ,12, repeat the following two steps
alternately:
For even rounds:

{Ee[3], Ee[2], Ee[1], Ee[0]}←{Ee[0]
¿b6 , Ee[3]

¿b6 , Ee[2]
¿16, Ee[1]

¿24},
Ke[4r + i]←Ee[i]⊕ Ce[r]⊕MCi, for 0 ≤ i ≤ 3.
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For odd rounds:

{Ee[7], Ee[6], Ee[5], Ee[4]}←{Ee[6]¿16, Ee[5]¿8, Ee[4]¿b2 , Ee[7]
¿b2},

Ke[4r + i]←Ee[i + 4]⊕ Ce[r]⊕MCi, for 0 ≤ i ≤ 3.

Ce[k] and MCi are constants we don’t care about.
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