
Granular Confidentiality and Integrity of JSON Messages

 Tiago Santos, Carlos Serrão

ISCTE – Instituto Universitário de Lisboa
Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)

Ed. ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal

Abstract

Modern web and mobile-based applications

exchange information with each other and with other

services, through specific APIs that extend the

applications multipart functionality and enable

interoperable information exchange. Currently these

mechanisms are implemented through the usage of

RESTful APIs and data interchange is performed

using the JSON format over the HTTP or HTTPS

protocol. Most of the times, due to specific security

requirements, the SSL/TLS protocol is used to create

a secure authenticated channel between the two-

communicating service end-points, where all the

content is encrypted. This is an important security

feature if the sender and the receptor are the only

communicating parties, however this may not be the

case. In this paper, a granular mechanism for

selectively offering confidentiality and integrity to

JSON messages, through the usage of public-key

cryptography is presented. The proposed mechanism,

as take in to consideration already existing

mechanisms, such as XML security, to best fit

developers’ acquaintance. In this paper, we will

present the proposal of the syntax for the secure

JSON format (SecJSON) and present a prototype

implementation of that particular specification that

was created to offer developers, written in Javascript

and Node.JS, the possibility to offer this security

mechanism into their own services and applications.

1. Introduction

Current web and mobile development follows a

paradigm where most of the software development is

encapsulated into self-contained entities, referred as

services. Services expose standardized interfaces

(API), using some existing mechanisms, to interact

with other services or systems, in order to provide

specific functionalities for their users. For instance,

imagine a mobile application that uses the Facebook

service to allow its users to update their Facebook

account and uses the Weather.com service to inform

its users about the weather on a given geo-location

[1]. The usage of such services involves the

definition of their internal functionality, the

communication mechanisms and the data interchange

formats that are required by the service and the

service invokers. The Internet, in particular the

World Wide Web, presented the opportunity for the

development of standard communication

environment that facilitated the service-oriented

software development and deployment [2].

In modern web-based service-oriented software, one

of the main mechanisms that is used to create

information exchange interoperability between

different Web-based services uses the Javascript

Object Notation (JSON), an open standard format

that uses plaintext to facilitate the transport,

processing and interoperability during information

serialization and de-serialization [3] cross multiple

heterogeneous services and applications. According

to its creator, Douglas Crockford, JSON is a natural

way for representing data that can be consumed by

different programming languages and different

platforms or architectures [4]. In this service-oriented

development model there are commonly the SOAP-

based and REST-based services. SOAP relies

entirely on XML to provide messaging services. It

was developed as a replacement for older

technologies such as Distributed Component Object

Model (DCOM) and Common Object Request

Broker Architecture (CORBA) that were based on

binary messaging not working well over the Internet.

SOAP was standardized and is part of a set of Web

Services Standards. XML is used to make requests

and receive responses in SOAP and this can become

extremely complex. An important part of the SOAP-

based web services is the Web Services Description

Language (WSDL). WSDL is used to describe how a

service works and what is the format of the messages

and it expects to receive and send. SOAP is

independent of the transport protocol and is not

dependent of the HTTP protocol [5]. However, a

large number of developers found SOAP

cumbersome and hard to use, in particular due to the

XML complexity and verbosity.

REST-based services are a lightweight alternative,

using simple mechanisms such as simple URLs,

Really Simple Syndication (RSS), Comma-Separated

Values (CSV) or JavaScript Object Notation (JSON)

to provide the communication and data exchange

methods to use the service. REST-based services are

dependent of the HTTP protocol using the HTTP

verbs (GET, POST, PUT and DELETE) in order for

the service to perform tasks. JSON is currently one

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 839

of the common options to exchange information on

REST-based services, due to its simplicity.

JavaScript Object Notation (JSON) is a text format

for the serialization of structured data described in

RFC 4627 [4]. The JSON format is often used for

serializing and transmitting structured data over a

network connection.

One of the first JSON implementations targeted

the communication between Javascript-based scripts

and Java-based servers. Although JSON was first

developed having into consideration the Javascript

language, it is currently platform and programming

language independent. In the last few years there has

been a significant growth in the usage of this format

to serialize and de-serialize information on web

services, promoting the data interoperability between

services running on different platforms and written

on a multiplicity of programming languages. JSON

can be seen today, together with HTTP, as the “glue”

that enables the interoperable communication

between different web-based services [6] and

applications (desktop, web or mobile centric). JSON

is widely used to support the communication

between multiple REST-based service APIs available

on web. Due to the increasing adoption of this type

of REST-based web-services and JSON data

interchange format, JSON security assumes extreme

significance, in particular, due to the sensitive

characteristics of the information that is JSON-

encapsulated (also known as JSON payload) and

transported between this distributed heterogeneous

ecosystem.

Due to the widespread and openness of the

Internet, there are currently mechanisms that allow

the protection of the communication channels

between the different applications and services

assuring the confidentiality and authentication of the

entire channel – the Secure Sockets Layer/ Transport

Layer Security protocol (SSL/TLS) [7]. SSL/TLS are

cryptographic protocols that offer communications

security over a network, ensuring that the connection

is private, the identity of the communicating parties

can be authenticated and the integrity of the

exchanged messages can be established. However,

SSL/TLS blindly ciphers all the information that

flows on the communication channel, in the same

similar way. This is a limitation that makes

impossible to cipher parts of message with a key and

other parts of an SSL/TLS message with a different

cryptographic key. Therefore, all the messages sent

from a specific sender, are encrypted with the

appropriate cryptographic key, in order to be

decrypted by a particular receiver – the encryption is

always end-to-end.

This is an SSL/TLS characteristic that is adequate

for two entities secure authenticated communication,

but it is not adequate to offer the possibility of

ciphering the same message conditionally (for

instance JSON or XML data), using different keys or

using different protection mechanisms

(cryptographic algorithms), which could be required

by specific applications and by different users [8].

There may exist situations in which the information

that needs to be sent or routed to multiple entities,

even if those entities are not the final receptor of

such message. Therefore, it should exist a

mechanism that would allow the same JSON

message/document to have multiple sections of that

document that are protected in a specific manner,

while others have a different protection type. With

these requirements in mind, it is possible to imagine

a scenario where the same JSON document can

contain critical and non-critical information,

protected in different ways, with distinguished ways

of accessing such information (see Figure 1).

In the depicted scenario, a single payload of

JSON-formatted data, contained inside the JSON

structure is protected using different protection

mechanisms, that are adequate for different

applications and different users. The same message

is sent to multiple receivers however, only the

receivers with the appropriate decryption

mechanisms and decryption keys are able to access

the JSON data that is intended for them.

This article intends to present a secure and

granular solution for the protection of confidentiality

and integrity of JSON documents. The major

contribution of the work presented in this article can

be resumed in the presentation of the syntax and

semantics of a mechanism capable of ensuring the

granular confidentiality and integrity of JSON

objects and the implementation of the syntax

necessary to support the security mechanisms

necessary. Other important contribution of this work

consists of the implementation of a software library

that will enable developers implementing web-

services to be able to use these JSON security

functionalities in an easy and straightforward

manner. The article starts by providing an

introduction to the modern approach to the

development of distributed web services. After this, a

more detailed presentation of the HTTP-based

RESTful services is provided, as well as some

references to the data interchange format that is

currently being used on these cases, and some

problems involved in the security of JSON.

Following this part, a proposal and specification of a

secure version of JSON (SecJSON) is provided. The

following section provides a description of the

implementation that was conducted to implement a

library that would allow web-services developers to

use the SecJSON format. Finally, some conclusions

from the work are presented as well as some of its

limitations.

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 840

Figure 1. Scenario of the granular security of JSON interactions

2. JSON-BASED Web Services

Most business transactions currently depend on

the existence of Web Services. More and more

developed applications are following a service-

oriented approach. This is the reason why it has

become one of the most important areas of the IT

industry [9]. The security inherent in this type of

transactions is essential to ensure the success of an

organization and automate most of their internal and

external business processes. The possibility for

organizations or users to interact directly with other

organization’s systems over open networks raise

security concerns. How can organizations ensure that

their own information or the information of their

users reaches the final destination safely, preserving

confidentiality and integrity, whenever sensitive

information is routed through the WWW [9].

Looking at the state of the art, it is possible to

identify different protocols and technologies to

ensure the security and confidentiality on the

Internet/WWW, each one of them using their own

ways to protect information. One of the most used

web protection mechanisms is SSL/TLS. As it was

previously stated, the main functionality of the

SSL/TLS protocol is to establish an encrypted and

authenticated communication channel between two

communication parties - the client, usually a web

browser and a server.

However, as previously referred, this mechanism

encrypts all information passing through the

communication channel, using pre-established

cryptographic primitives and keys, in the same way.

Therefore, it is impossible, in a conditional and

granular manner, to encrypt JSON messages, or parts

of messages, with different keys or encryption

schemes. This constraint can be a problem for

specific use cases. The focus of SSL/TLS protocol

consists in the protection of information serialization

between two entities. Information is immediately

deciphered on arrival at the end-point, regardless of

their final destination [10]. In the case of a channel

compromise, all information transmitted can be

accessible to an attacker. Moreover, SSL/TLS is

mostly used at the server level and not the

application level – meaning that information is

decrypted at the server and not at the application. In

a scenario where a server is running multiple

applications, with multiple users, and each of them

have their specific security requirements, SSL/TLS

might not be the appropriate solution to offer

confidentiality and integrity to JSON messages in

this case. In addition to these problems, in a scenario

where sensitive JSON information is forwarded by

multiple parties without them to be the final recipient

of the information, if one of the parties is

compromised all the information can be exposed. In

this scenario, the protection of the JSON messages

offered by SSL/TLS protocol is insufficient.

There are already some specific technologies for

providing the security of JSON data. One of the most

prominent initiatives in this field is the Javascript

Object Signing and Encryption (JOSE). JOSE is a

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 841

framework that was developed with the intention to

provide a method to securely transfer claims (such as

authorization information) between parties [11]. The

JOSE working group standardized a mechanism to

offer integrity protection (signature and MAC) and

encryption as well as the format for keys and

algorithm identifiers to support interoperability of

security services for protocols that use JSON [12].

JOSE is currently mostly used for digital identity

identification (as an alternative or a complement to

OAuth) and is composed by a set of different

specifications: JSON Web Token [13], Signature

[14], Encryption [15], Key [16] and Algorithm

specifications [17]. For developers, in particular

those already involved on service-oriented software

development, this means having to use a new

specification and increase their learning curve. This

way, for some cases, it would be better to have a

lightweight approach to the JSON security problem,

and to base its development on something that was

already existing and more mature, such as the XML

web-services security standards (WS-Security) [18].

Considering this requirement and the existing WS-

Security, the Secure Javascript Object Notation

(SecJSON) was developed.

3. Secure Javascript Object Notation

(SECJSON)

Considering the different aspects of modern

JSON documents confidentiality and integrity, and

the mechanisms that are mostly offered for security

on the WWW, it is possible to conclude that

SSL/TLS is not suitable for all the security scenarios

involving JSON. Therefore, this work was conducted

to devise a security framework that could be used to

offer JSON protection, in a way that it would be easy

for programmers to use to implement security on

their services. This section of the paper presents

some of the major requirements guiding the

development of SecJSON as well as the description

of the approach that was followed throughout its

development. The SecJSON syntax is also presented.

3.1. SecJSON requirements

The basic rational behind the specification and

development of SecJSON is to assure a security

mechanism that would enable the protection of JSON

data. The specific requirements of the solution can be

resumed in the following:

• SecJSON should offer a protection mechanism

that is independent of any other existing channel

encryption mechanism – this means that

SecJSON can act as a security mechanism that

can be used on top (at the application level) of

other underlying security mechanism, such as

SSL/TLS;

• SecJSON should consider the protection of JSON

data without any underlying channel encryption

mechanism (for instance, SSL/TLS). This means

that even if the communication channel is not

encrypted, SecJSON should provide the security

mechanisms to offer the appropriate protection to

JSON;

• SecJSON should assume that data inside the

JSON document/message could have as destiny

different receptors with different access

clearances;

• SecJSON should make possible to protect either

the entire JSON document/message or simply

protect specific parts of the JSON

document/message – offer granularity in terms of

protetion;

• SecJSON should also make possible the usage of

multiple keys and multiple encryption algorithms

to protect different sections of the same JSON

document/message;

• SecJSON should be independent of any specific

programming language, or encryption algorithms;

• SecJSON should be easy to implement and used

by any third parties;

• Finally, SecJSON would be open and free to use

by anyone.

Considering the set of identified requirements,

SecJSON was specified and developed. The

following sections of this article present the

SecJSON specification and the implementation that

was performed to allow developers to integrate

SecJSON into their own development lifecycle.

3.2. SecJSON overview

The proposed Secure JSON consists in a set of

rules and specifications for encrypting information

and represent their results in JSON format. Data to

be protected can include another JSON document, a

primary type (for instance, a sequence of characters)

or a structured type (for instance, an array).

SecJSON is a mechanism that was based on the

XML Encryption standard, which specifies the

method for encrypting data and how it can be

represented in XML format [19].

The result of the encryption process consists of a

SecJSON element EncryptedData, which contains

encrypted information.

{

 "Case":"Case info",

 "Witness protection":[

 {

 "Name":"Igor",

 "id":123

 }]

}

The previously presented JSON object, contains

sensitive information about witnesses, that needs to

be protected. In an initial stage it should be identified

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 842

where is the information that will need to be

encrypted (in this case the “Witness protection”

element):

{

 [

 "Name":"Igor",

 "id":123

]

}

After SecJSON cipher process is applied to the

previously located element, it is replaced by the

appropriate EncryptedData element. This element

contains all necessary components to allow the

SecJSON decipher process. The result is similar to

the following object:

{

 "Case":"Case info",

 "Witness protection":{

 "EncryptedData":{

 (... SecJSON elements ...)

 }

 }

}

Whenever the encryption process is applied to a

JSON document/message the result is a new JSON-

encrypted document with a single EncryptedData

element.

{

 "EncryptedData":{

 (... SecJSON elements ...)

 }

}

3.3. SecJSON proposed syntax

This section offers a detailed description of the

syntax and features of the Secure JSON (SecJSON).

The syntax is defined using the JSON-Schema in

order to be similar to what occurs in the XML

security. The JSON implementation should generate

a JSON object accepted and validated by the JSON

Schema defined and available in

http://tiagomistral.github.io/SecJSON/ secjson-

schema.json.

EncryptedType element

EncryptedType is the abstract type from which

EncryptedData and EncryptedKey are

derived. While these two element types are very

similar with respect to their content models, a

syntactical distinction is useful for processing these

elements.

Although JSON Schema does not support abstract

elements, a representation of this element is useful to

facilitate the interpretation of the syntax.

EncryptionMethod element

EncryptionMethod is an optional element that

describes the encryption algorithm applied to the

original data to obtain the ciphered counterpart. If the

element is absent, the encryption algorithm must be

known by the recipient or the decryption will fail.

CipherData element

CipherData is a mandatory element that provides

the encrypted data. It must either contain the

encrypted octet sequence as a Base64 encoded text

of the CipherValue element, or provide a

reference to an external location containing the

encrypted octet sequence via the

CipherReference element.

CipherReference element

If CipherValue is not supplied directly, the

CipherReference identifies a source which,

when processed, yields the encrypted octet sequence.

The actual value is obtained as follows. The

CipherReference URI contains an identifier

that is dereferenced. Should the

CipherReference element contain an optional

sequence of Transforms, the data resulting from

dereferencing the URI is transformed so as to yield

the intended cipher value.

EncryptedData element

The EncryptedData element is the core element

in the JSON encrypted structure syntax. Not only

does its CipherData child contain the encrypted

data, but it is also the element that replaces the

encrypted element, or serves as the new document

root.

KeyInfo element

There are two ways that the keying material needed

to decrypt CipherData can be provided:

• The EncryptedData or

EncryptedKey element specify the

associated keying material via a child of
KeyInfo element.

• The keying material can be determined by
the recipient by application context and thus
need not be explicitly mentioned in the
transmitted JSON document.

EncryptedKey element

The EncryptedKey element is used to transport

encryption keys from the originator to a known

recipient(s). It may be used as a stand-alone JSON

document, be placed within an application document,

or appear inside an EncryptedData element as a

child of a KeyInfo element. The key value is

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 843

always encrypted to the recipient(s). When

EncryptedKey is decrypted the resulting octets

are made available to the EncryptionMethod

algorithm without any additional processing.

Figure 2. SecJSON encryption process

3.4. SecJSON Processing Rules

This section describes the operations that need to

be performed as part of the encryption and

decryption processing by any implementation of the

SecJSON specification. Again, in a similar way as it

occurred in the the definition of SecJSON elements,

the SecJSON processing rules are based on the same

rules that are used by XML Encryption standard

[19].

The conformance requirements are specified over the

following roles:

Application: the application which makes a request

of an SecJSON implementation via the provision of

data and parameters necessary for its processing;

Encryptor: a SecJSON implementation with the role

of encrypting data;

Decryptor: a SecJSON encryption implementation

with the role of decrypting data.

For each data item to be encrypted (Error!

Reference source not found.) as an element derived

from EncryptedType, the encryptor must:

1. Select the algorithm (and parameters) to be
used in encrypting this data.

2. Obtain and (optionally) represent the key.

a. If the key is to be identified (via naming, URI,
or included in a child element), construct the
KeyInfo as appropriate.

b. If the key itself is to be encrypted, construct
an EncryptedKey element by recursively

applying this encryption process. The result
may then be a child of KeyInfo, or it may

exist elsewhere and may be identified in the
preceding step.

3. Encrypt the data:

a. obtain the octets by serializing the data in
UTF-8 (or other encoding choose by
application). Serialization may be done by
the encryptor. If the encryptor does not
serialize, then the application must perform
the serialization.

b. Encrypt the octets using the algorithm and
key from steps 1 and 2.

c. Unless the decryptor will implicitly know the
type of the encrypted data, the encryptor
should provide the type for representation.

4. Build the EncryptedType structure. An

EncryptedType structure represents all

of the information previously discussed
including the type of the encrypted data,
encryption algorithm, parameters, key, type
of the encrypted data, etc.

a. If the encrypted octet sequence obtained in
step 3 is to be stored in the CipherData

element within the EncryptedType, then

the encrypted octet sequence is base64
encoded and inserted as the content of a
CipherValue element.

b. If the encrypted octet sequence is to be stored
externally to the EncryptedType

structure, then store or return the encrypted
octet sequence, and represent the URI and
transforms (if any) required for the decryptor
to retrieve the encrypted octet sequence
within a CipherReference element.

5. Process EncryptedData

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 844

a. If the type of the encrypted data is a JSON
element, then the encryptor must be able to
return the EncryptedData element to the

application. The application may use this as a
new JSON document or insert it into an
another. The encryptor should be able to
replace the unencrypted 'element' or 'content'
with the EncryptedData element. When

b. an application requires an JSON element or
content to be replaced, it supplies the JSON
document context in addition to identifying
the element or content to be replaced. The
encryptor removes the identified element or
content and inserts the EncryptedData

element in its place.

If the type of the encrypted data is not 'element'

or element 'content', then the encryptor must always

return the EncryptedData element to the

application. The application may use this as a new

JSON document or insert it into an another.

EncryptedType derived element to be decrypted

(see Error! Reference source not found.), the

decryptor must:

1. Process the element to determine the
algorithm, parameters and KeyInfo element

to be used. If some information is omitted, the
application is responsible for supply it.

2. Locate the data encryption key according to
the KeyInfo element. If the data encryption

key is encrypted, locate the corresponding key
to decrypt it. Or, one might retrieve the data
encryption key from a local store using the
provided attributes or implicit binding.

3. Decrypt the data contained in the
CipherData element.

a. If a CipherValue child element is present,

then the associated text value is retrieved and
base64 decoded so as to obtain the encrypted
octet sequence.

b. If a CipherReference child element is

present, the URI and transforms (if any) are
used to retrieve the encrypted octet sequence.

c. The encrypted octet sequence is decrypted
using the algorithm/parameters and key value
already determined from steps 1 and 2.

4. Process decrypted data.

a. The cleartext octet sequence obtained in step
3 is interpreted as UTF-8 encoded character
data.

b. The decryptor must permit the return of
resulting data in a JSON structure with
defined encoding. The decryptor is not

required to perform validation on the
serialized JSON.

c. The decryptor should support the ability to
replace the EncryptedData element with

the decrypted JSON element or simple
content. The decryptor is not required to
perform validation on the result of this
replacement operation. The application
supplies the JSON document context and
identifies the EncryptedData element

being replaced. If the document into which
the replacement is occurring is not UTF-8, the
decryptor must transcode the UTF-8 encoded
characters into the target encoding.

4. SECJSON Implementation

In order to validate the SecJSON specification

and usage and in order to make it available for third

party developers, an implementation of SecJSON

was built using Node.js. Node.js (or simply Node) is

an open-source platform for server-side and web

applications [20] development entirely based on

JavaScript and JSON format, which is an advantage

for its adoption throughout this article. Besides the

already mentioned advantages, Node.js also has a

Node Package Manager (NPM), which is the default

package manager for Node.js [20]. This allow that

new libraries stay available to developers, making

code reutilization easy and efficient on development

[21].

4.1. secjson.js

Throughout this section the main Node.js

functions developed according to the syntax defined

in the previous sections, are presented. The

implementation of XML Encryption for Node.js was

considered as the starting point for this

implementation, and it may be accessed from
https://github.com/auth0/node-

xml-encryption.

4.2. Encryption process

The encryption process is responsible for

receiving content and other parameters to encrypt

and return a JSON object according to the defined

syntax. As required parameters, this function

requires content to encrypt, public key, PEM x509

certificate, and optionally set the element to encrypt

using a JSON path. When invoked, this operation,

sequentially applies the methods needed to encrypt

the content provided:

• findKeyEncryptValue: if a JSON

path is defined, the element will be located
in the JSON structure.

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 845

• generate_symmetric_key: generate

a symmetric key to encrypt the user-defined
content.

Figure 3. SecJSON decryption process

• encrypt_content: encrypt the user-

defined content with the key generated in the
previous point.

• encrypt_key: encrypt the symmetric key

used for encryption with public key provided
by the user.

The following section of source-code represents a

small example on how to use the SecJSON library to

encrypt some JSON data (the JSONDATA part,

should be replaced by the actual JSON data to

encrypt). The “encrypt” function receives a set of

options to setup the encryption process (namely the

encryption key to use) and encrypts the data.

var secjson = require('secjson');

var options = {

 rsa_pub: fs.readFileSync(__dirname +

'/test-auth0_rsa.pub'),

 pem: fs.readFileSync(__dirname + '/test-

auth0.pem'),

 encryptionAlgorithm:

'http://tiagomistral.github.io/SecJSON#aes12

8-cbc',

 keyEncryptionAlgorighm:

'http://tiagomistral.github.io/SecJSON#rsa-

oaep-mgf1p'

};

secjson.encrypt('<JSONDATA>', options,

function(err, result) {

 console.log(result);

});

4.3. Decryption process

The decryption process is responsible for

obtaining the decrypted content. As parameters this

function requires a JSON object according to

SecJSON syntax and a private key. The methods

needed to decrypt the content provided, will then be

called, in sequence:

• findKeyDecryptValue: if a JSON

path is defined, the element will be located
in the JSON structure.

• JSON.parse: validate JSON object

provided.

• decryptKeyInfo: Decipher the element

content
EncryptedData.KeyInfo.Cipher

Data with the private key provided, getting

the symmetric key used in the encryption
process.

• switch(encryptionAlgorithm):

Decipher the payload with the symmetric
key obtained in the previous point. This
process is dependent on the element
EncryptedData.EncryptionMeth

od, whose information corresponds to that

used cryptographic algorithm (AES 128,
AES 256 or TripleDES).

The following section of source-code represents a

small example on how to use the SecJSON library to

decrypt some previously encrypted JSON data. The

“decrypt” function receives a set of options to setup

the decryption process (namely the appropriate

decryption key to use) and decrypts the data.

var decryptOptions = {

 key: fs.readFileSync(__dirname + '/test-

auth0.key')

};

secjson.decrypt(encryptResult,

decryptOptions, function(err, dec) {

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 846

 console.log(dec);

5. Conclusions

The distribution of services over the Internet has

grown in the past years as one of the most interesting

trends in software development [22]. A proliferation

of web-based APIs has popped up allowing

developers to extend their services with the ones

developed by third parties. HTTP-based RESTful

services have become one of the most relevant ways

to implement distributed web-services and JSON has

emerged has the data interoperability standard that

enables transparent data transfer between different

implementation technologies [23].

Data transfer between all of these services,

includes critical private information that requires

specific protection. Most of the times, the SSL/TLS

protocol can be used to provide end-to-end channel

encryption however, some specific cases may require

more than simply channel encryption. For instance,

there are some situations in which the data contained

in a JSON document can contain sensitive

information that cannot be disclosed to all the

possible entities at the same time. This information

can have different protection layers, ciphered with

multiple keys and using different encryption

methods. These are some of the questions that

SSL/TLS cannot answer.

Having this into consideration, the authors

propose and describe a secure JSON approach, based

on previous XML and web services security work,

that offers the required requirements that extend the

protection used by traditional end-to-end channel

encryption approaches. The goal of the presented

work is not to act as a replacement for SSL/TLS

protocol but rather to complement it while offering

an additional security layer to the security of the

JSON content transmitted over secure or insecure

network connections. The implementation of this

JSON security framework consisted on three main

parts: the definition of a syntax that allows

encryption and decryption of a JSON document,

implementation and delivery of a prototype of the

defined syntax and validation of implementation.

The validation of the implementation concluded that

the SecJSON solution is a complementary solution to

SSL/TLS, allowing the support of granular security

solutions for JSON protection and the development

of an additional security layer on top of SSL/TLS.

Also, the similarity with other related XML security

solutions, makes SecJSON an easy to learn to

solution to all the developers that are used to use a

similar approach.

One of the requirements of the work presented on

this article was the provision of an open and free

SecJSON library, that could be used by developer to

implement security on their own REST-based web

});

services. This library was implemented as a

Node.js packages and released using NPM, which

may be accessed from https://www.npmjs.com/

package/ secjson.

The definition and development of SecJSON was

a real challenge but limited the time to software

optimization. It would be interesting to extend this

project in order to perform comparisons between

existing alternative security solutions for JSON and

the one described here.

6. References

[1] F. Müller and F. Thiesing, “Social networking APIs for

companies—An example of using the Facebook API for

companies,” in Computational Aspects of Social Networks

(CASoN), 2011 International Conference on, 2011, pp.

120–123.

[2] G Denaro, M Pezze, D Tosi, and Daniela Schilling,

“Towards self-adaptive service-oriented architectures,” in

TAV-WEB ’06: Proceedings of the 2006 workshop on

Testing, analysis, and verification of web services and

applications, 2006, pp. 10--16.

[3] C. Severance, “Discovering javascript object notation,”

Computer (Long. Beach. Calif)., vol. 4, no. 45, pp. 6–8,

2012.

[4] D. Crockford, “The application/json media type for

javascript object notation (json),” 2006.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,

and S. Weerawarana, “Unraveling the Web services web:

an introduction to SOAP, WSDL, and UDDI,” IEEE

Internet Comput., vol. 6, no. 2, p. 86, 2002.

[6] R. R. McCune, “Node. js paradigms and benchmarks,”

STRIEGEL, Gr. OS F, vol. 11, 2011.

[7] S. Thomas, SSL & TLS Essentials: Securing the Web,

Pap/Cdr. Wiley, 2000.

[8] A. A. A. El-Aziz and A. Kannan, “JSON encryption,”

in Computer Communication and Informatics (ICCCI),

2014 International Conference on, 2014, pp. 1–6.

[9] P. Ratnasingam, “The importance of technology trust in

web services security,” Inf. Manag. Comput. Secur., vol.

10, no. 5, pp. 255–260, 2002.

[10] K. Maeda, “Performance evaluation of object

serialization libraries in XML, JSON and binary formats,”

in Digital Information and Communication Technology

and it’s Applications (DICTAP), 2012 Second

International Conference on, 2012, pp. 177–182.

[11] M. Miller, “Using JavaScript Object Notation (JSON)

Web Encryption (JWE) for Protecting JSON Web Key

(JWK) Objects,” 2013.

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 847

[12] E. Stark, M. Hamburg, and D. Boneh, “Symmetric

cryptography in javascript,” in Computer Security

Applications Conference, 2009. ACSAC’09. Annual,

2009, pp. 373–381.

[13] M. Jones, J. Bradley, and N. Sakimura, “Json web

token (jwt),” 2015.

[14] M. Jones, J. Bradley, and N. Sakimura, “JSON Web

Signature (JWS),” 2015.

[15] M. Jones and J. Hildebrand, “Json web encryption

(jwe),” 2015.

[16] M. Jones, “JSON web key (JWK),” 2015.

[17] M. Jones, “JSON Web Algorithms (JWA),” 2015.

[18] A. Nadalin, G. T. AmberPoint, P. D. BEA, H. L.

BEA, S. C. CommerceOne, T. D. ContentGuard, G. L.

ContentGuard, T. J. P. ContentGuard, S. S. C. Commerce,

G. V. Documentum, and others, “Web Services Security,”

SOAP Messag. Secur. Version, vol. 1, 2002.

[19] T. Imamura, B. Dillaway, E. Simon, and others,

“XML encryption syntax and processing,” W3C Recomm.,

vol. 10, 2002.

[20] M. Cantelon, M. Harter, T. J. Holowaychuk, and N.

Rajlich, Node. js in Action. Manning, 2014.

[21] S. Tilkov and S. Vinoski, “Node. js: Using JavaScript

to build high-performance network programs,” IEEE

Internet Comput., vol. 14, no. 6, p. 80, 2010.

[22] K. M. Dhara, M. Dharmala, and C. K. Sharma, “A

Survey Paper on Service Oriented Architecture Approach

and Modern Web Services,” 2015.

[23] M. W. Khan and E. Abbasi, “Differentiating

Parameters for Selecting Simple Object Access Protocol

(SOAP) vs. Representational State Transfer (REST) Based

Architecture,” J. Adv. Comput. Networks, vol. 3, no. 1,

2015.

International Journal of Intelligent Computing Research (IJICR), Volume 8, Issue 2, June 2017

Copyright © 2017, Infonomics Society 848

