
Hyhoneydv6: A hybrid Honeypot Architecture for IPv6 Networks

Sven Schindler1, Bettina Schnor1, Thomas Scheffler2

1Department of Computer Science University of Potsdam, Germany
2Department of Electrical Engineering Beuth Hochschule, Berlin, Germany

Abstract

This paper presents a new hybrid honeypot archi-tecture which
focuses on the coverage of large IPv6 address spaces. Results from a
15-months darknet experiment verify that attackers and researchers
utilise various approaches to scan wide and unforeseeable IPv6
address ranges which cannot be managed with current honeypot
solutions. The huge IPv6 address space not only makes it hard for
attackers to find target hosts, it also makes it difficult for a honeypot
to get found by an attacker. We solve this challenge through the use of
dynamically configured high-interaction honeypots that can cover
large chunks of the IPv6 address space. A new proxy mechanism is
used to transparently handover and forward traffic from low-to high-
interaction honeypots on demand to provide the best possible service
granularity. Measurements with our prototype implementation show
that the proposed approach performs well on off-the-shelf hardware
and has low maintenance costs.

1. Introduction

In May 2015, the global IPv6 usage of all Google users
reached a peak of more than 6 percent1, which is a growth of
more than 100 percent over a single year. Individual countries,
such as Belgium, observe up to 33 percent of IPv6 traffic.
These numbers motivate our growing interest to determine the
current threat level in IPv6 networks.

Honeypots are useful security tools to monitor malicious
activities, judge the network threat level and gain insight in the
application of known and novel attack methods. The two major
IPv6-capable low-interaction honeypot projects are Dionaea2

and Honeydv63[16]. Dionaea focuses on the emulation of well-
known services, such as SMB or SIP. Honeydv6 extends the
well-known honeypot Honeyd [14] and provides a framework
to simulate entire IPv6 networks.

IPv4 networks do not require any special provisions to
make sure that a honeypot will be found by an attacker.
Tools like ZMap and Masscan can be used to scan the entire
IPv4 Internet within minutes [7]. This stands in stark contrast
to the deployment of honeypots in IPv6 networks, where
the huge address space makes brute force network scans
impossible. The following section presents the results of a 15-
months IPv6 darknet experiment which shows that attackers
apply various scan approaches to explore IPv6 networks. We

1http://www.google.com/intl/en/ipv6/statistics.html
2http://dionaea.carnivore.it/
3https://redmine.cs.uni-potsdam.de/projects/honeydv6/

will show that these scan approaches require new honeypot
design concepts that are not provided by current honeypot
implementations. In the following, we introduce a new hybrid
honeypot architecture called Hyhoneydv6 that is designed to
cover huge IPv6 address spaces.

2. Results of an Darknet Experiment
We conducted a 15-months darknet experiment using a /34

network to find out what kind of scan approaches attackers
use to explore IPv6 networks.

2.1. Experimental Setup
We used the packet analyser tcpdump4 to capture the entire

darknet traffic in our /34 darknet. We analysed the received
network scans and visualized the targeted address spaces by
converting each probed address into a 128-bit integer value that
we could depict on a gnuplot5 diagram. It is important to note
that the applied gnuplot version 4.6.6 does not support large
128-bit values. For this reason, we downsized the generated
values without destroying the proportions.

2.2. Scan Patterns
Table I shows the total number of received packets grouped

by protocol. ICMPv6 represents the majority of the received
traffic. With over 31,600 received packets, TCP amounts to
about 12 percent of the captured traffic. The amount of
received UDP traffic is comparatively low. With 226 UDP
packets, the protocol takes up less than 0.1 percent of the
total traffic.

Table I
PROTOCOL DISTRIBUTION AND TOTAL AMOUNT OF CAPTURED PACKETS

DURING THE EXPERIMENT

Total 255,840
ICMPv6 224,010 87.56%
TCP 31,604 12.35%
UDP 226 0.09%

The ICMPv6 traffic was dominated by Echo Request-based
network scans and the TCP traffic contained mostly TCP SYN

4www.tcpdump.org
5http://www.gnuplot.info

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 562

��������

���������

���������

���������

���������

��������

���������

���������

���������

���������

��������

�� ����� ����� ����� ����� ������ ������ ������ ��������
��
�
��
�
�
�
��
�
�
��
�
��
�
��
�
���
�
�
��
�
�
�
�
�

�������������

Figure 1. Sample for Scan Pattern 1: ICMPv6 Echo Request message-based
network scan, apparently sent from the Karlsruhe Institute of Technology,
scans multiple adjacent address spaces.

������

������

��������

������

��������

������

��������

������

��������

������

��������

������

�� ���� ���� ���� ���� ���� ������
��
�
��
�
�
�
��
�
�
��
�
��
�
��
�
���
�
�
��
�
�
�
�
�

�������������

Figure 2. The first two linear scans of the scan set shown in Fig. 1.

scans. We observed that the majority of these network scans
matched one of the following two patterns:

Scan Pattern 1: The first scan pattern was mostly produced
by a source pointing to the Karlsruhe Institute of Technol-
ogy (KIT). Multiple individual Echo Request message based
network scans sent a total of 14994 packets to 4352 unique
destinations within a wide address space range. Except two
of the received packets, all packets arrived with the same
hop limit value of 57. Noticeable is the fact that all scans
tried to contact only low-byte addresses ending with ::1 in a
large number of different subnets. Fig. 1 visualizes the scanned
address space.

A common characteristic of these scan samples is that the
address space appears to be probed in an uniformly distributed
manner. Individual scans having a small temporal distance
scanned entirely different address spaces whereas, in some
cases, temporal distant scans probed adjacent address spaces.

A closer inspection of the scans, depicted in Fig. 2, reveals
that individual scans of this pattern sent probes to multiple
adjacent destinations in an ascending order.

Scan Pattern 2: Various sources utilised a scan pattern
which appeared to be much more scattered than the first
pattern. An example scan, sent through the ISP AS342886,
is shown in Fig. 3. Similar to the first scan pattern, the probes
targeted low-byte addresses only.

6https://as34288.net

��������

���������

���������

���������

���������

��������

���������

���������

���������

���������

��������

���������

�� ����� ����� ����� ����� ����� ����� ����� �������
��
�
��
�
�
�
��
�
�
��
�
��
�
��
�
���
�
�
��
�
�
�
�
�

�������������

Figure 3. Sample for Scan Pattern 2: Visualization of the address space that
was apparently contacted by AS34288.

���������

���������

���������

���������

���������

���������

��������

���������

���������

���������

�� �� ��� ��� ��� ��� ��� ��� ��� �����
��
�
��
�
�
�
��
�
�
��
�
��
�
��
�
���
�
�
��
�
�
�
�
�

�������������

Figure 4. A closer inspection of the scan set shown in Fig. 3.

Although the target address space also appears to be uni-
formly distributed, a large number of individual scans covers
relatively small independent address spaces. This can further
be observed in Fig. 4. The Figure depicts the scan of three
contacted destinations. In contrast to the first pattern, each
individual scan sent fifteen packets to the same destination
before trying a different, not necessarily adjacent destination.
A closer look at the individual packets reveals that, in most
cases, each host received packets with different hop limit
values. Usually, a hop limit value between 1 and 5 was used,
whereby a destination received three packets for each hop limit
value in an ascending order.

2.3. Summary
We received many further network scans with similar char-

acteristics, but we could not observe any more sophisticated
scanning techniques.

Most of the received packets belong to large ICMPv6 net-
work scans. It appears that many of these scans are conducted
by universities or other research institutions. We found that the
scanning methodology differs between multiple scans although
some scans from different sources seem to apply the same
scanning algorithm. A common characteristic of the majority
of the observed ICMPv6 scans is that they only contacted low-
byte addresses in various, not necessarily adjacent networks.

Although we received more packets than expected, only one
in about 6 ∗ 1023 addresses in our /34 network was contacted.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 563

This proportion shows, that new architectural approaches are
required to successfully deploy honeypots in sparsely popu-
lated IPv6 networks.

3. IPv6 Honeypot Requirments
The results of our darknet experiment show that IPv6

network scanners aim at a wide and unforeseeable address
space range. Therefore, we present a new and efficient hybrid
honeypot architecture for IPv6 networks which focuses on the
handling of large IPv6 address spaces and which fulfils the
following requirements:

R1: IPv6 Address Space Coverage - Honeydv6 supports
large IPv6 address spaces by starting new low-interaction hon-
eypots based on attackers’ requests. We extend this approach to
allow the dynamic deployment of high-interaction Honeypots.

R2: Genuine Service Emulation - Attacks to complex net-
work services are handled by high-interaction honeypots run-
ning real operating systems with authentic network services.

R3: Price/Performance - The presented hybrid honeypot
system utilises low-interaction honeypots to reduce the load
on high-interaction honeypots. This reduction allows CERTs,
universities and students to use the honeypot architecture
without hiring cloud-based data centers.

R4: Honeypot Concealment - The handover between the
low- and high-interaction honeypot-systems must be seamless
in order to conceal the honeypot from an attacker.

4. Hyhoneydv6 Architecture

Figure 5. The hybrid IPv6 honeynet architecture processes network-scans on
low-interaction honeypots and sophisticated attacks on virtual machine-based
high-interaction honeypots.

Fig. 5 provides an overview over the components that are
used in the architecture. A low-interaction honeypot layer
dynamically instantiates honeypots based on attacker’s des-
tinations (R1). The instantiation is done randomly, based on

a configurable probability. Simple network scans and attacks
to less complex network services are processed in a low-
interaction honeypot layer and therefore require a minimum
of system performance. Sophisticated attacks are transparently
forwarded to a high-interaction honeypot layer (R4). The high-
interaction honeypot layer contains a limited number of vir-
tual machine-based high-interaction honeypots which will be
configured on-demand according to the requested destination
address (R2). The entire architecture is placed on a single
machine running off-the-shelf hardware (R3).

This section describes the main concepts and their imple-
mentation. Our hybrid architecture extends the low-interaction
honeypot Honeydv6 [16] and is called Hyhoneydv6.

4.1. Dynamic Instantiation of high-interaction
Honeypots

A newly implemented high-interaction honeypot man-
ager starts and dynamically configures virtual machine-based
high-interaction honeypot instances on demand. Our mecha-
nism works similar to the dynamic machine instantiation of
Honeydv6 which creates low-interaction honeypots based on
attackers requests [16].

Fig. 6 shows the main components that are involved in
our architecture. Incoming connections from an attacker first
arrive at a low-interaction honeypot, which in this case is
implemented by Honeydv6. Providing that the Hyhoneydv6
configuration defines a high-interaction honeypot mapping for
the requested host and service, the high-interaction honeypot
manager is requested to dynamically furnish a correspond-
ing virtual machine instance. When this assignment between
attacker and high-interaction honeypot is finished, the low-
interaction honeypot starts to proxy all incoming packets to
the high-interaction honeypot. Packets coming from the high-
interaction honeypot targeting the attacker are still passed
through Hyhoneydv6’s customised network stack to keep
control over the exchanged packets.

Figure 6. Components of the implemented architecture.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 564

The honeypot manager uses the virtualisation library lib-
virt to create, backup and destroy QEMU-based [3] virtual
machine instances [9]. We avoid a long machine startup
time by working with a machine pool that contains already
running machines. All virtual machines in the pool are booted
automatically within the initialisation process of Hyhoneydv6.
After a configurable timeout, a machine that interacted with
an attacker is considered unused and an automatic memory
backup will be created for forensic analyses.

4.2. Remote IPv6 Address Configuration
The forwarding of complex attacks to high-interaction hon-

eypots requires a remote address configuration of the corre-
sponding virtual machine. We decided to implement a custom
IPv6 address configuration server which runs on the high-
interaction honeypots and which interacts with the honeypot
manager to reconfigure IPv6 addresses of the underlying host
on-demand. The server installation is temporary and removes
itself after finishing its tasks.

4.3. Attack Assignment
In [6], the authors create a new machine for every distinct

source IP address. This approach allows observing attacks
from different adversaries in an isolated manner because a
stored machine state can be correlated to a single adversary.
While this approach works well in IPv4 networks, it is not suit-
able for IPv6 networks. Due to IPv6 privacy extensions [13]
and the allocation of larger address spaces, it is more probable
that an attacker uses different IPv6 source addresses when
executing an attack. We therefore decided to assign incoming
network traffic to high-interaction honeypots based on the
target addresses without considering the source addresses. We
accept the fact that we may forward the traffic of more than
one adversary to the same machine in the unlikely event that
multiple attacks are targeting the same IPv6 destination.

4.4. Transparent TCP Proxy
A core component of the presented architecture is a newly

implemented TCP proxy which extends the customised net-
work stack of Honeydv6 to transparently hand over complex
attacks from low- to high-interaction honeypots.

Our approach allows to configure a high-interaction honey-
pot with the same IPv6 address as an already existing low-
interaction honeypot. All the main IPv6 header fields are
copied when proxying traffic to a high-interaction honeypot
without any changes to the high-interaction honeypot operating
system.

Fig. 7 shows the operation of our transparent proxy mech-
anism based on a short example. An attacker first conducts a
simple TCP SYN scan and aborts the 3-way TCP handshake
with an RST packet. This is handled completely by the
low-interaction honeypot. In a second attempt, the attacker
establishes a TCP connection to the honeypot node with
the IPv6 address 2001:db8::5 so that Hyhoneydv6 starts the
IPv6 address reconfiguration of an available high-interaction
honeypot.

An attacker may send further packets before the connection
to the high-interaction honeypot is established. These packets
are buffered and sent to the high-interaction honeypot when it
becomes available. When the connection process has finished,
Hyhoneydv6 sends all packets from the packet queue to
the high-interaction honeypot before processing any further
packets from the adversary.

Figure 7. Implementation of a transparent TCP handoff.

The packet flow in Fig. 7 shows in green all header fields
that are identical in both connections. This includes the source
and destination addresses, the source and destination ports
as well as the hop limit field. The TCP design does not
allow us to communicate with the same sequence numbers
without modifying the honeypot operating systems. This is
a drawback of our architecture that we accept in favour of
an uncomplicated deployment, requiring no network layer
modifications.

5. Performance Evaluation
This section presents the results of our performance mea-

surements and proves that simple off-the-shelf hardware is
sufficient to run a hybrid honeynet which covers entire IPv6
networks.

5.1. Test Setup and Hardware Specifications
We conducted our tests with Hyhoneydv6 running on a

desktop-class computer which is specified in Table II. Depend-

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 565

ing on the executed measurement, the Hyhoneydv6 host was
running a varying number of QEMU-based high-interaction
honeypots.

Table II
HARD- AND SOFTWARE SPECIFICATIONS OF THE HYHONEYDV6 HOST

Device/System Specification
Operating system Ubuntu 12.04 LTS
Qemu 1.0
Motherboard EP45-DS3
CPU Intel(R) Core(TM)2 Quad

CPU Q9550 @ 2.83GHz
Memory 4GB (2x2) 800 MHz
Network RTL8111/8168/8411

PCI Express GE Ctrl.
(r8169 Gigabit Ethernet driver
2.3LK-NAPI)

HD SanDisk SDSSDP25
(read: 490MB/s write: 350MB/s)

Table III
EMULATED HARD- AND SOFTWARE SPECIFICATIONS OF THE VIRTUAL

HONEYPOTS

Device/System Specification
Operating systems Windows XP (IPv6 support) /

Debian 7.5 kern. 3.2.0-4-686 pae
Memory 256 MB
Network Realtek Semiconductor,

RTL-8139/8139C/8139C
CPU QEMU virtual CPU

5.2. Initiating TCP Connections and Machine
Reconfiguration

It is a crucial aspect in our architecture that the establish-
ment of a connection can be done in a reasonable amount of
time. A delayed response time caused by the IPv6 address
reconfiguration may expose the honeypot infrastructure and
should therefore be avoided.

We measured the time needed to establish SSH connections
to Debian-based high-interaction honeypots. We conducted
this measurement with a fully emulated and with a KVM-
based Debian machine. The machines run an OpenSSH server
to which we opened a connection while measuring the re-
sponse time. We used two different measuring points in this
experiment to determine the overall connection time from the
attacker’s point of view and the internal connection time from
low- to high-interaction honeypot. For the overall connection
time, we measured the duration starting from the first TCP
SYN packet that leaves the attacker’s interface card until the
arrival of the first TCP packet that carried actual payload. This
measurement was done using the network packet tracing tool
Wireshark7. The blue bars in Fig. 8 show the corresponding
results. The green bars depict the amount of time that Hy-
honeydv6 consumes in the internal honeypot reconfiguration
and connection stage. An internal timer measures the time
needed to create the transparent proxy connection to the
high-interaction honeypot as soon as Hyhoneydv6 received a
connection request. In case of the first connection request, this

7https://www.wireshark.org/

0

0.5

1

1.5

2

2.5

3

3.5

First (FE) First (KVM) Subs. (FE) Subs. (KVM)

pr
ox

y
co

nn
ec

t
ti
m

e
in

 s
ec

on
ds

emulation and connection type

Total response time

Internal connect to HIH

Figure 8. Time needed to establish SSH-connections to Debian-based high-
interaction honeypots.

0

50

100

150

200

250

300

350

400

FE KVM
re

qu
es

ts
 /

 s
ec

on
d

high-interaction honeypot virtualization type

Figure 9. HTTP requests/second.

duration includes the time needed for the address configuration
of the high-interaction honeypot. Each measurement was re-
peated 5 times and the median values are shown in the Figure.
It takes approximately 2.5 seconds until a client receives the
first TCP payload after sending the initial TCP SYN packet to
the fully emulated machine. In contrast, about one second less
is needed on the KVM-based virtual machine. However, we
could observe only an insignificant acceleration of the internal
high-interaction honeypot connection establishment and the
address reconfiguration when using KVM. All subsequent
requests could be processed in less than 0.5 seconds. By using
KVM, the response time could be further reduced to about 0.02
seconds.

Another performance metric that influences a realistic user
experience is data throughput. We choose to measure the
number of HTTP requests that our architecture is able to
process for an open connection. We installed the Apache
webserver on a Debian high-interaction honeypot and used
the publicly available benchmark servload version 0.9 [10].
We booted a single Debian machine instance and configured
servload to request the default HTML test page up to 400 times
per second. Fig. 9 shows the measurement results. The fully
emulated Debian machine was able to process 200 requests
per second while the KVM based machine performs about
320 requests per second. Hence, both machines types are more
than sufficient for our application scope.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 566

Table IV
CAPABILITY COMPARISON OF MAJOR HYBRID HONEYPOT AND HONEYCLOUD ARCHITECTURES.

Honeypot IPv6 Support Scan Handling Support IP Address Updates Dynamic Instantiation
Hyhoneydv6 yes yes yes yes

A Hybrid Honeypot - yes no no
Architecture for Scalable
Network Monitoring [2]

GQ [6] - no no yes

Honeybrid [4] no yes no no

VMI-Honeymon [12] - - no no

Honey@home [1] no yes no no

A Hybrid System for no yes - no
Wireless Mesh
Networks [15]

Collapsar [8] - - no no

Potemkin [17] - no yes yes

An adaptive honeypot yes no yes yes
system to capture
IPv6 adress scans [11]

HoneyCloud [5] no no - yes

6. Related Work
We surveyed major existing hybrid honeypot architectures

and large-scale honeyfarms and compared them against
our architecture in terms of their IPv6 capabilities, their
handling of network scans and their high-interaction honeypot
deployment strategies. We evaluated the following properties:

IPv6 Support: Determines whether an architecture can be
deployed in IPv6 networks. Possible table values are either
yes, if an architecture supports IPv6 networks or no, if IPv6
is not supported. A dash character indicates that the IPv6
support could not be determined.

Scan Handling Support: The filtering or restriction of
network scans unnecessarily prevents an attacker from finding
hosts in the honeypot address space. If an architecture is
able to handle arbitrary network scans and does not require
filter mechanism, then this value is set to yes. A value of no
indicates that the architecture either requires scan filters to
reduce the system load or that the architecture restricts the
scan support to certain address ranges.

IP Address Updates: Indicates whether the address of a
high-interaction honeypot corresponds to the address that is
expected by an attacker. Architectures which utilize NAT or
similar mechanism to establish a connection to an attacker
have an entry value of no, otherwise it is set to yes.

Dynamic Instantiation: This field is set to yes in case an
architecture dynamically creates high-interaction honeypot
instances. A fixed number of honeypots constrains an

architecture to forward multiple attackers to the same
honeypot instance or to restrict the number of attackers to the
number of available machines. If an architecture uses a fixed
number of high-interaction honeypots, then this field is set to
no.

In the following, we elaborate these properties individually
for the evaluated honeypot architectures. Table IV summarizes
the results.

IPv6 Support

The survey shows that, even after more than 15 years after
the publication of the initial IPv6 specification, there is still a
lack of IPv6-compatible honeypot projects. Nine of the eleven
architectures do not support or consider IPv6 networks at all.
The only other architecture with IPv6 support is presented by
Kishimoto et al. [11]. However, the presented solution relies on
the IPv6 Neighbour Discovery (ND) protocol which limits its
applicability to /64-networks, whereas Hyhoneydv6 supports
arbitrarily large IPv6 networks.

Scan Handling Support

Only five of the eleven evaluated architectures are able
to handle network scans without the requirements for filters.
However, except Hyhoneydv6, none of the projects with scan
support also support IPv6 networks.

All of the architectures which support the processing of net-
work scans apply low-interaction honeypots for this purpose.
For example, Bailey et al. use low-interaction honeypots to
process so-called uninteresting traffic [2]. Traffic is considered
to be uninteresting, if it contains known payloads or packets

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 567

that do not belong to existing connections, which includes
network scans. Honey@home is another architecture which
proposes the use of low-interaction honeypots to process
network scans [1]. In contrast to the architecture by Bailey et
al., only traffic that indicates malicious activity is forwarded
to high-interaction honeypots. Similar to Honey@home, the
hybrid honeypot architecture for wireless mesh networks ap-
plies low-interaction honeypots to process network scans and
only malicious traffic is forwarded to high-interaction hon-
eypots [15]. In contrast to the other architectures, Honeybrid
provides a honeypot framework instead of a fully implemented
architecture and leaves the handling of network scans to
the actual implementation [4]. The example implementation
presented by the authors uses Honeyd [14] to implement the
low-interaction honeypot layer and may therefore fully support
the handling of network scans.

The network scan filter approaches vary between the hon-
eypot architectures. GQ uses multiple filtering mechanisms
to reduce the load on the high-interaction honeypots [6]. For
example, uninteresting traffic, such as network probes coming
from a single source, is filtered while interesting traffic is
forwarded to a small number of high-interaction honeypots.
The Potemkin honeyfarm architecture dynamically instantiates
new honeypots for each newly requested target address [17].
Potemkin implements traffic filters to filter out uninteresting
traffic like network scans in order to limit the number of
dynamically created machines. The architecture presented by
Kishimoto et al. restricts the instantiation of new machines
to addresses which are generated using the default EUI-64
algorithm [11]. Therefore, networks scans targeting arbitrary
address spaces, which may include addresses generated with
IPv6 privacy extensions [13], will never cause the instantiation
of a machine. HoneyCloud instantiates a new virtual machine
for each pair of source and destination IP address [5]. It only
accepts traffic on the SSH port 22. This way, the architecture
avoids the massive instantiation of new virtual machines
through network scans to other ports.

In case of the Collapsar [8] and the VMI-Honeymon [12]
honeypot architecture, it is not entirely clear whether the
architectures are able to process network scans. In case of
the Collapsar architecture, attackers communicate via so-called
redirectors to a Collapsar backend, which contains a number of
virtual machine-based honeypots. The authors do not provide
any information about the handling of probe packets by
redirectors. VMI-Honeymon builds upon Honeybrid and could
theoretically be able to efficiently process network scans. How-
ever, the sample implementation of VMI-Honeymon differs
from the proposed Honeybrid implementation and it is not
clear whether the authors added a mechanism to filter network
scans.

IP Address Updates

Three of the eleven evaluated architectures make sure that
the IP address of a high-interaction honeypot matches the
address that was probed by the attacker. Six of the evaluated
architectures use proxy techniques, such as NAT, which result

in different IP addresses on the high-interaction honeypots than
originally requested. In two cases, the IP configuration was not
further specified.

The Potemkin honeyfarm architecture [17] and the architec-
ture presented by Kishimoto et al. [11] dynamically instantiate
new machines on-demand. Both architectures deploy high-
interaction honeypots based on incoming requests without
the utilization of low-interaction honeypots. Kishimoto et al.
remotely configure IPv6 addresses via SSH before forwarding
an attacker to a machine. This approach, however, requires an
SSH daemon running on the high-interaction honeypots which
may reveal honeypot systems where an installed SSH daemon
is unusual. It is also not clear whether Kishimoto et al. hide
all traces of the IP address reconfiguration, for example, by
deleting the corresponding shell history entries. Potemkin uses
a different approach to reconfigure IP addresses. The Potemkin
architecture includes a clone manager which creates new
honeypot instances by cloning an already running Xen base
machine image. As soon as the cloning process is finished, the
clone manager sends an unspecified configuration packet to the
newly instantiated machine. This configuration packet contains
the desired IP address and triggers the address reconfiguration.

In six of the eleven evaluated projects, the addresses of
the high-interaction honeypots differ from the originally re-
quested addresses. Bailey et al. apply a proxy component,
which forwards new and unknown connection flows from low-
interaction to a fixed number of high-interaction honeypots [2].
The IP addresses on these honeypots stay unaltered and the
proxy implementation is required to tunnel connections to
the high-interaction honeypots. GQ employs NAT to translate
the public IP addresses to the actual honeypot addresses [6].
Honeybrid’s prototype implementation works with a fixed
number of high-interaction honeypots and implements a Redi-
rection Engine which proxies connections from low- to the
high-interaction honeypots [4]. The process does not include
an address reconfiguration. The same applies to the VMI-
Honeymon architecture which is built upon Honeybrid [12].
Collapsar is another architecture which applies a fixed number
of high-interaction honeypots in its backend. Network packets
are directly injected into the virtualized NIC of the virtual
machine-based high-interaction honeypots in order to avoid
an IP address reconfiguration.

In case of the HoneyCloud [5] architecture and the hybrid
system for wireless mesh networks [15], it is not clear whether
an IP reconfiguration is applied. In case of the HoneyCloud
architecture, the system description indicates that the public
IP addresses are only configured on the HoneyCloud gateway,
which is located between attackers and high-interaction hon-
eypots.

Dynamic Instantiation

Honeypot architectures which work with a fixed number of
honeypot instances may either restrict the number of parallel
attackers to the number of available machines or forward
multiple attackers to the same machine. This limitation can
be avoided by the implementation of a dynamic instantiation

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 568

mechanism which creates new honeypot instances on-demand
as required. Five of the eleven evaluated architectures, includ-
ing Hyhoneydv6, use such a dynamic machine instantiation
for high-interaction honeypots whereas all other architectures
employ a fixed number of honeypot instances.

The architectures with dynamic machine instantiation sup-
port apply very different approaches. The GQ architecture
utilizes a replay proxy component which learns from the
communication between attackers and dynamically instanti-
ated high-interaction honeypots [6]. The replay proxy handles
known and interesting traffic as far as it has learned the corre-
sponding traffic flow. As soon as GQ observes an uncommon
and new packet flow in an attack, it replays and continues
the communication with a high-interaction honeypot so that
the replay proxy can observe and learn the new traffic flow.
The high-interaction honeypots are controlled by a honeypot
manager which is responsible for starting and resetting the
machine instances. The Potemkin [17] architecture utilizes
high-interaction honeypots only. It employs a sophisticated
cloning and data transfer mechanism, called flash cloning
and delta virtualization, to rapidly clone an already running
base machine. The IPv6-specialized architecture presented by
Kishimoto et al. [11] starts a number of virtual machine-
based high-interaction honeypots in advance. An IPv6 router
with ND-support connects these high-interaction honeypots
to the Internet. Depending on various filtering mechanisms,
an incoming Neighbor Solicitation message may trigger the
address reconfiguration so that the corresponding honeypot
is ready to interact with an attacker. An address assign-
ing manager dynamically resets and reboots the honeypot
instances into a clean state after successfully observing an
attack. HoneyCloud provisions a new virtual machine-based
high-interaction honeypot for each attacker on-demand [5].
To achieve this in an acceptable duration, a Cloud Controller
component employs a pool of already started virtual machines.
The Cloud Controller starts new machines when required to fill
the machine pool and stops machines after a certain interaction
timeout.

Survey Summary

At the time of writing, there is only one other honeypot
architecture with limited IPv6 support available. All other
presented architectures either do not support IPv6 or do
not provide any information about their deployment in IPv6
networks. Less than half of the presented architectures are
able to process network scans. A majority of the architectures
either require scan filters to reduce the load on the honeypots
or do not provide information about the processing of network
scans. Although forty percent of the surveyed architectures
dynamically instantiate honeypots, only a minority configures
their IP addresses to the addresses that were initially probed
by the attackers.

Hyhoneydv6 is the first hybrid honeypot architecture which
supports all evaluated properties. The architecture can handle
large-scale IPv6 network scans and provides dynamically

instantiated high-interaction honeypots to cover entire IPv6
address spaces.

7. Conclusions
We have observed various network scans to unforeseeable

addresses ranges in a 15-months darknet experiment. A com-
mon property of all major scans is a wide destination range,
containing many different /64 subnets. This paper presents a
hybrid honeypot architecture, called Hyhoneydv6, which can
manage huge IPv6 address spaces and which performs well on
off-the-shelf hardware. Low-interaction honeypots are used to
process simple network scans while high-interaction honeypots
handle sophisticated attacks. The high-interaction honeypots
are dynamically created and configured on demand.

The transition from low- to high-interaction honeypots is
supported by a proxy mechanism which allows low- and
high-interaction honeypots to own the same IPv6 address in
the same network. This mechanism gives the attacker the
impression that he or she is working on a real host after being
forwarded to a high-interaction honeypot.

Performance measurements show that Hyhoneydv6 is able
to configure a fully-emulated high-interaction honeypot and
establish a new connection for a request to an arbitrary
IPv6 address in about 2.5 seconds. By using a KVM-based
high-interaction honeypot, the setup time is reduced to about
1.5 seconds. Once configured, even a fully-emulated high-
interaction honeypot is able to process 200 transparently
proxied HTTP requests per second on commodity hardware.

Hyhoneydv6 has the benefit that it needs no additional
knowledge about typical scan methods in IPv6 networks and
that it reduces hardware costs since an IPv6 network can
now be simulated on a single host. Further, it integrates the
superior analysis capabilities of high-interaction honeypots
with network-wide monitoring capabilities of low-interaction
honeypots. A survey of large-scale honeypot architectures
shows that Hyhoneydv6 is currently the only available archi-
tecture providing these facilities.

References
[1] ANTONATOS, S., ANAGNOSTAKIS, K., AND MARKATOS, E.

Honey@Home: A New Approach to Large-scale Threat Monitoring. In
Proceedings of the 2007 ACM Workshop on Recurring Malcode (New
York, NY, USA, 2007), WORM ’07, ACM, pp. 38–45.

[2] BAILEY, M. D., COOKE, E., WATSON, D., JAHANIAN, F., AND
PROVOS, N. A Hybrid Honeypot Architecture for Scalable Network
Monitoring. Tech. Rep. CSE-TR-499-04, University of Michigan, Ann
Arbor, Michigan, USA, October 2004.

[3] BELLARD, F. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the Annual Conference on USENIX Annual Technical
Conference (Berkeley, CA, USA, 2005), ATEC ’05, USENIX Associa-
tion, pp. 41–41.

[4] BERTHIER, R. G. Advanced honeypot architecture for network threats
quantification. PhD thesis, University of Maryland, College Park, MD,
USA, 2009. AAI3359256.

[5] CLEMENTE, P., LALANDE, J.-F., AND ROUZAUD-CORNABAS, J. Hon-
eyCloud: elastic honeypots - On-attack provisioning of high-interaction
honeypots. In International Conference on Security and Cryptography
(Rome, Italy, July 2012), pp. 434–439.

[6] CUI, W., PAXSON, V., AND WEAVER, N. C. GQ: Realizing a System
to Catch Worms in a Quarter Million Places. Tech. rep., University of
California, Berkeley, CA, 2006.

8.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 569

[7] DURUMERIC, Z., BAILEY, M., AND HALDERMAN, J. A. An Internet-
Wide View of Internet-Wide Scanning. In 23rd USENIX Security Sym-
posium (USENIX Security 14) (San Diego, CA, Aug. 2014), USENIX
Association, pp. 65–78.

[8] JIANG, X., AND DONGYAN, X. J. Collapsar: A VM-Based Architecture
for Network Attack Detention Center. In Proceedings of the 13th
USENIX Security Symposium (2004), pp. 15–28.

[9] JONES, M. T. Anatomy of the libvirt virtualization library. IBM
developer Works (2010), 97–108.

[10] JÖRG ZINKE AND JAN HABENSCHUSS AND BETTINA SCHNOR.
servload: Generating Representative Workloads for Web Server Bench-
marking. In International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS) (Genoa, Italy, July
2012), vol. 44, IEEE Communications Society, pp. 82–89.

[11] KISHIMOTO, K., OHIRA, K., YAMAGUCHI, Y., YAMAKI, H., AND
TAKAKURA, H. An Adaptive Honeypot System to Capture IPv6
Address Scans. In Cyber Security (CyberSecurity), 2012 International
Conference on (Dec 2012), pp. 165–172.

[12] LENGYEL, T. K., NEUMANN, J., MARESCA, S., PAYNE, B. D., AND
KIAYI, A. Virtual Machine Introspection in a Hybrid Honeypot
Architecture. In 5th Workshop on Cyber Security Experimentation and
Test (Berkeley, CA, 2012), USENIX.

[13] NARTEN, T., DRAVES, R., AND KRISHNAN, S. Privacy Extensions
for Stateless Address Autoconfiguration in IPv6. RFC 4941 (Draft
Standard), Sept. 2007.

[14] PROVOS, N., AND HOLZ, T. Virtual Honeypots: From Botnet Tracking
to Intrusion Detection. Addison-Wesley, 2008.

[15] RAWAT, P., GOEL, S., AGARWAL, M., AND SINGH, R. Securing WMN
Using Hybrid Honeypot System. International Journal of Distributed
and Parallel Systems 3, 6 (2012).

[16] SCHINDLER, S., SCHNOR, B., KIERTSCHER, S., SCHEFFLER, T., AND
ZACK, E. IPv6 Network Attack Detection with HoneydV6. In E-
Business and Telecommunications, M. S. Obaidat and J. Filipe, Eds.,
vol. 456 of Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2014, pp. 252–269.

[17] VRABLE, M., MA, J., CHEN, J., MOORE, D., VANDEKIEFT, E., SNO-
EREN, A. C., VOELKER, G. M., AND SAVAGE, S. Scalability, Fidelity,
and Containment in the Potemkin Virtual Honeyfarm. In Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2005), SOSP ’05, ACM, pp. 148–162.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 2, June 2015

Copyright © 2015, Infonomics Society 570

