

information using the JavaScript library. When

Client-side encryption is enabled, an RSA keypair is

generated and the user will be given a specially

formatted version of the public key. RSA is the

algorithm that is used to encrypt data with a private

key to produce a digital signature. The private key,

however, is never revealed to the user or anyone else.

The data is decrypted using the keypair’s private key.

Public and private keys are created simultaneously

using the same algorithm (RSA- Rivest-Shamir-

Adleman). Private keys are used to decrypt text that

has been encrypted with a public key.

d)Decryption of data

When the user requests to read the data from the

database, the web application will check user’s

credentials (if the session is active) and get the key

from the server to allow decryption of data.

e)User Authentication

Upon successful authentication, the user will be given

a public key, which will be used for the

encryption/decryption of the data. This private key

will be stored on the server side, with all the user

information which is used for decrypt the data. We

are going to use OAuth 2, which is an open standard

for authorization. This will be used to securely

transfer the private key from the server to the

encryption library.

f)Deletion of data

Secure deletion of data will be required to overwrite

the space of data with zeros. This means that the data

cannot be read again, as all of the values are set to

zero.

If running over HTTPS, then things are more secure

as the browser will detect a modified JavaScript file.

The SSL layer of HTTPS protocol handles this.

5.1. Proposal

Hashing and encryption can be done within

browsers through the JavaScript encryption library.

Algorithm will use a JavaScript encryption library

(proposed Stanford JS Encryption Library), where the

library will be implemented into the browser

(Firefox) as an extension. This extension will be

based on the top of IndexedDB API and therefore

every time during the reading or writing of data, the

data will be encrypted. The library consists of

encryption with private and public keys. The private

key will be saved on the server. The public key will

be given to the user and stored on the user’s machine,

the same way as a cookie. The extension will provide

encryption/decryption of data on the user’s machine,

which will resolve the issue of storing data in an

unencrypted state.

5.2. Algorithm Used

It differs from typical AES implementations

(different approach that keeps the code small and

speeds up encryption/decryption). The source code

for the AES algorithm, also called Advanced

Encryption Standard or the Rijndael algorithm. The

benchmarking tests have shown that the Stanford JS

Encryption library performs faster than other client

side encryption libraries. The benchmark has been

achieved in multiple browsers on Windows, Mac and

Linux Operating Systems. One of the reasons we

proposed to use and implement the library into

algorithm was the speed and multiplatform usage.

The algorithm is going to contain the JavaScript

encryption library, which will be implemented into

the browser. The algorithm will consist of a few

steps, with the higher security. This will allow the

end user to save and retrieve data from IndexedDB.

The data will be encrypted with the JavaScript library

and a private and public key will be used to

encrypt/decrypt this data.

5.3. Implementation

The model will add an extra layer between the

web browser and IndexedDB API. The security

model consists of an algorithm framework, which

adds extra protection against issues identified, by

reading each other’s data through XSS

vulnerabilities.

Algorithm is using JavaScript encryption library

(proposed Stanford JS Encryption Library), where the

library is implemented into the browser (Firefox) as

an extension. This extension is placed on the top of

IndexedDB API and therefore every time during the

reading or writing of data, the data will be encrypted.

The library consists of encryption with private and

public keys. As expected, the private key will be

saved on the server. The public key will be given to

the user and stored on the user’s machine, the same

way as a cookie. The extension will provide

encryption/decryption of data on the user’s machine,

which will resolve the issue of storing data in an

unencrypted state. It will also provide better security

for possible attacks, where the attacker can

manipulate with user data.

The browser based local storage security model

(BBLS) is relying on the web browser security model

(WBSM), which is using Same origin policy. The

security mechanism is not enough to preserve the

security confidence among the end user.

The BBLS security model differs from WBSM in

few ways, which includes the security mechanism.

The main difference is that BBLS security model is

trying to secure the data between browser and the end

user file system, where comparing to WBSM, which

is securing the data between web applications and

user browser.

The goal of BBLS security model is to secure the

data, which is stored in client side database. User

should be able to visits other websites, without they

databases to be compromised.

The current WBSM is not sufficient protection for

complex web application and stored data on client

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 627

side is becoming more important.

The security model consists of an encryption

framework, which will help to secure the data. The

encryption framework cannot though provide full

security protection. We argue that such protection is

not achievable in a single machine, since any single

browser could be the target of an XSS attack.

Therefore, functionality external to be browser needs

to be implemented. For implementation to existing

encryption library we will use Multifactor

authentication (MFA). MFA is used to make the

authentication process more secure by adding an

extra layer of security. The extra authentication will

need to be passed to make sure the encryption library

decrypts the data. Mobile two-factor authentication

use phones to replace fobs or software-based tokens

that were commonly used for remote authentication.

When a person tries to log into an online service, a

security pin is sent to his or her mobile phone via

voice or SMS message, rather than to the token.

5.4. Evaluation

To evaluate the security model, we will run tests to

conclude the effectiveness of the model. This will

include attacks, which will be bypassing the SOP

trough XSS attacks. First we will perform and attack

with existing security, without applying the security

model.

Then we will add the security model, and perform

the attack again. We suggest that the model will

prevent an attacker to read data from other source, by

adding the authentication process to place. Also the

data stored will be encrypted, which means that even

the authentication process is compromised, the data

will not be available to read in unencrypted state.

Based on our findings, we can state that there is a

case for browser-based databases. We have

implemented a JavaScript encryption framework,

which is a part of the security model implemented into

the browser in a form of an extension. The proposed

security model extension addresses the security issue

that IndexedDB has as a product of its design. Also,

the implemented security model fulfils the security

requirements.

6. Conclusion and Future Work

Based on these findings, we can state, that there is

a case for browser-based databases. Browser based

databases though face security problems over and

above those on the server, and this has inhibited their

uptake. Nevertheless, despite the existing issues faced

by browser-based storage, there is a future for the

technology due to its convenience, performance,

reduced reliance on continuously available network

connection.

Considering the issues and concerns of storing

data locally, browser based storage has the potential

to be widely used, where the main advantage is the

performance speed, cross platform (desktop, mobile,

tablet) and browser availability. The advantages of

local storage outweighs the disadvantages, keeping in

mind that the issues identified can be corrected and

browser-based storage can be widely used by

developers without any concerns of security issues

introduced as by design limitations.

Although the proposed security framework has

been successfully applied to browser based local

storage, further improvements can be made in

extending the security and performance model. These

could be addressed by extending the current model to

use further security factors such as biometrics.

7. References

[1] Naseem, S.Z. Majeed, F. (2013) Extending HTML5
local storage to save more data; efficiently and in more
structured way. Eighth International Digital Information
Management (ICDIM).

[2] Zhanikeev, M. (2013) A Practical Software Model for
Content Aggregation in Browsers Using Recent Advances
in HTML5. 37th Annual Computer Software and
Applications Conference Workshops (COMPSACW).
pp.151-156, Japan 22-26 July 2013

[3] Ryck, P. Desmet, L. Philippaerts, P. Piessens, F. (2011)
A Security Analysis of Next Generation Web Standards,
(European Union Agency for Network and Information
Security - ENISA). Tech. Rep.

[4] Anttonen, M. Salminen, A. Mikkonen, T. Taivalsaari, A
(2011) Transforming the web into a real application
platform: new technologies, emerging trends and missing
pieces. ACM Symposium on Applied Computing. New
York, NY, USA. Pp. 800-807.

[5] Chuang, T. T., Nakatani, K, Chen, J. C. H. and Huang,
I. L. (2007). Examining the Impact of Organisational and
Owner's Characteristics on the Extent of E-commerce
Adoption in SMEs,

[6] Pool, P. W., Parnell, J. A., Spillan, J. E., Carraher, S.
and Lester, D. L. (2006). Are SMEs Meetings the
Challenge of Integrating E-commerce into Their
Businesses? A Review of the Development, Challenges and
Opportunities, International Journal Information
Technology and Management, 5(2/3), pp.97-113.

[7] Jones, J. (2014) E-commerce: measuring, monitoring
and gross domestic product. ONS. Available at:
http://www.ons.gov.uk/ons/rel/gva/national-accounts-
articles/e-commerce--measuring--monitoring-and-gross-
domestic-product/index.html (Accessed: 20 September
2015).

[8] Ta, H., Esper, T., & Hofer, A. R. (2015).
Business‐to‐Consumer (B2C) Collaboration: Rethinking
the Role of Consumers in Supply Chain Management.
Journal of Business Logistics, 36(1), 133-134.

[9] Xiaojing, L., Liwei, Z., & Weiqing, W. (2012). The
mechanism analysis of the impact of eCommerce to the
changing of economic growth mode. In Robotics and
Applications (ISRA), 2012 IEEE Symposium on (pp. 698-
700). IEEE.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 628

[10] Boritz, E., Gyun, W., and Sundarraj, P. 2008. Internet
privacy in E-commerce: Framework, review and
opportunities for future research. In: Proceedings of the
41st Hawaii International Conference on System Sciences.
Hawaii, January 7-10 2008, pp.204-256.

[11] Gehling, B., & Stankard, D. (2005). eCommerce
security. In Proceedings of the 2nd annual conference on
Information security curriculum development (pp. 32-37).
ACM.

[12] Gómez, J. M., & Lichtenberg, J. (2007). Intrusion
Detection Management System for ECommerce Security.
Journal of Information Privacy and Security, 3(4), 19-31.

[13] Buja, G., Jalil, K. B. A., Ali, F. B., Mohd, H., &
Rahman, T. F. A. (2014). Detection model for SQL
injection attack: An approach for preventing a web
application from the SQL injection attack. In Computer
Applications and Industrial Electronics (ISCAIE), 2014
IEEE Symposium on (pp. 60-64). IEEE.

[14] Appelt, D., Nguyen, C. D., Briand, L. C., &
Alshahwan, N. (2014). Automated testing for SQL injection
vulnerabilities: An input mutation approach. In Proceedings
of the 2014 International Symposium on Software Testing
and Analysis (pp. 259-269). ACM.

[15] Summers, S., Schwarzenegger, C., Ege, G., & Young,
F. (2014). The emergence of EU criminal law: cyber crime
and the regulation of the information society. Bloomsbury
Publishing.

[16] Karthik, R., Patlolla, D. R., Sorokine, A., White, D. A.,
& Myers, A. T. (2014). Building a secure and feature-rich
mobile mapping service app using HTML5: challenges and
best practices. In Proceedings of the 12th ACM
international symposium on Mobility management and
wireless access (pp. 115-118). ACM.

[17] Ayenson, M. Wambach, D. J. Soltani, A. Good, N.
Hoofnagle, C. J. (2011) Flash cookies and privacy II: Now
with HTML5 and ETag respawning. Computer and
Information Systems Abstracts. [Online]. Available at:
http://dx.doi.org/10.2139/ssrn.1898390 (Accessed: 10
February 2015).

[18] Strozzi, C. (1998) NoSQL A Relational Database
Management System. Available at: http://www. strozzi.
it/cgi-bin/CSA/tw7/I/en_US/nosql/Home% 20Page
(Accessed: 20 September 2015).

[19] Kimak, S. Ellman, J. Laing, C. (2014) Some Potential
Issues with the Security of HTML5 IndexedDB. In: System
Safety and Cyber Security 2014 (IET Conference), 14-16th
October 2014, The Midland Hotel, Manchester, UK.

[20] Casario, M. Elst, P. Brown, Ch. Wormser, N.
Hanguez,C. (2011) HTML5 Solutions: Essential
Techniques for HTML5 Developers. Publisher: FRIENDS
OF ED; 1 edition ISBN: 1430233869.

International Journal of Intelligent Computing Research (IJICR), Volume 6, Issue 4, December 2015

Copyright © 2015, Infonomics Society 629

