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Abstract 

In this paper, we propose a different approach to 

modeling of a system that focuses on the capability of 

the system to participate in interactions with its 

environment. Accordingly, we use a mathematical 

object to describe this capability. In addition, we 

show an equivalency (from an outer point of view) 

between capabilities and states. Furthermore, we 

more generally discuss the equivalence of systems 

where comparison of capabilities and bisimulation 

are related. Finally, we define a composite algebraic 

structure and then show that capabilities of the 

system are a solution of a system of equations in this 

algebraic structure. 

1. Introduction

The effort to rigorously modeling critical systems 

and exploring their properties is becoming more and 

more common. This effort ranges from the UML [3] 

to the model checking technique [1]. The model 

checking technique is a mature formal method based 

on operational semantics and mainly on exhaustive 

analysis of state space by brute force. However, 

computer science still looks up to mathematics, 

where it is possible to work with entire spaces at 

once. Such possibility together with preserving a 

close connection to operational semantics would be 

ideal. One attempt in this direction was made in [5] 

where a π-calculus was introduced. 

This paper focuses on CCS (Calculus of 

Communicating Systems) [4], the predecessor and 

basis of π-calculus. Moreover, we are interested only 

in a narrow subset of CCS that forms the fundament 

of modeling a system in a CCS approach. 

The subset of CCS is described as follows. Let us 

have a set Act of actions and a set K of constants. 

Then, a set З of expressions is recursively defined as 

follows: 

З = { A, α·E, ∑i∈I Ei : A ∈ K; α ∈ Act; E, Ei ∈ З } 

where operations · and + are implicitly introduced. It 

is obvious that a set З is closed under both operations 

by definition. Consequently, the tuple (З, +, ·) forms 

a simple algebraic structure and we can write e.g. 

E = α·(F + β·A) E, F ∈ З  α, β ∈ Act  A ∈ K 

So far, expressions from З have no meaning. Hence, 

the meaning is given by the transition system (З, Act, 

Я), where Я is the transition relation (i.e. a subset of 

З × Act × З) generated by two transition rules. These 

rules (related to operations · and +, respectively) are 

defined as follows: 

α ∈ Act ∧ E ∈ З ⇔ (α·E, α, E) ∈ Я 

j ∈ I ∧ (Ej, α, F) ∈ Я ⇔ (∑i∈I Ei, α, F) ∈ Я 

that means, for example, an expression α·E becomes 

E by executing an action α (i.e. by participating on a 

proper handshake). See details in [4]. Despite the 

previous effort, constants from K still have no 

meaning. Moreover, elements from З remain as 

syntax formations (with no other mutual relations 

than the two rules defined above). For illustration, let 

us have a system given by the transition graph 

and let us try to express it by our (so far described) 

subset of CCS. Thus, we make two attempts: 

1) A = α·A 2) E = α·E  α ∈ Act   A ∈ K   E ∈ З 

which result into a failure. Both equations are invalid 

in terms of the mentioned algebraic structure (e.g. A 

and α·A are different elements from З). Even the 

mentioned rules cannot help. First, we know that α·A 

can become A, but we do not know if α·A equals A 

(and consequently if α·A can become α·A) because 

A 

α 
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we have no meaning of A. Second, it is clear that α·E 

cannot become α·E for any E from З \ K. In [4] it is 

solved by a workaround, i.e. by a defining equation 

 

A =
def

 α·A 

 

that gives a meaning to the constant A. In addition, 

normal equations (e.g. E + F = F + E) are meant as 

comparison of derivatives (i.e. transition trees, see 

[4]). Now, with defining and derivatives equations, 

our subset of CCS is complete. 

However, it is obvious that the CCS is no longer 

an algebraic structure. 

 

2. Transition system 
 

In the CCS approach, the definition of transition 

relation follows the structure of expressions and thus 

gives the semantics to them [4]. Nevertheless, in our 

approach, a transition relation and its meaning is the 

basis. Everything else is obtained by exploration and 

formalization of properties of this basis. 

At first, however, we formally define a transition 

system as a tuple 

 

(S, Λ, R
Λ
) 

 

where S is a finite set of states, Λ is a finite set of 

actions and R
Λ
 is a transition relation. More 

accurately,  R
Λ
 ⊆ S × Λ × S,  whereas 

 

(A, α, B) ∈ R
Λ
  A, B ∈ S  α ∈ Λ 

 

if and only if exists a transition from state A to state 

B labeled with α. The transition system is always just 

in one of its states, i.e. it may arise at most one 

transition at once. Thus, execution has the form of a 

sequence of transitions. 

Now we give a meaning to our transition system. 

Each transition represents an inner (causal) act of a 

modeled system. A part of the inner act is always 

exposed to the environment of the modeled system 

and this part is represented by the action in our 

transition system. However, the action is not meant 

as an outer symptom of the inner act; the action is 

meant as a complement in an interaction (i.e. it can 

be seen as the one side in a handshake). Therefore, 

the action can be executed only together with its 

complementary action from the environment (usually 

from the other system). Consequently, the execution 

of the action is a necessary condition for execution of 

a rest of the inner act. 

 

 

3. Modeling and capabilities 
 

In this section, we improve the semantics of our 

(inner) transition system. In addition, we develop an 

appropriate outer transition system (i.e. a description 

of a modeled system from an outer point of view). 

Finally, we introduce the capabilities (i.e. an outer 

transition system expressed purely by the actions). 

 

3.1. Permissible executions 
 

Usually, there are possible many executions (i.e. 

sequences of transitions) of our transition system but 

only some of them well characterize what a modeled 

system can do. Hence, we pay an attention to what a 

transition system permits, instead of what is possible 

(as an execution). It lead us (at first intuitively) to 

introduce a permissible executions. For example, let 

us have two transition systems 

 
in states A. Both transition systems have one infinite 

possible execution (with sequence of actions ααα…) 

and infinitely many finite possible executions (with 

sequences of actions α, αα, ααα, …). Does it mean 

they are equal? No, the transition system on the left 

permits just the mentioned infinite execution, which 

means the modeled system is still capable to execute 

the action α. However, the transition system on the 

right permits only the mentioned finite executions. It 

means the modeled system is capable to execute any 

number of actions α, but not infinitely many (note 

that the number of actions is not predictable). 

Accordingly, we formally define a permissible 

execution as a particular (and possibly infinite) walk 

on transition graph, i.e. as a sequence of transitions 

 

( (Xi, αi, Xi+1) )i∈I  X1 = A  (Xi, αi, Xi+1) ∈ R
Λ
 

 

where R
Λ
 is a transition relation, A is a non-terminal 

initial state of execution (note that a terminal state is 

a state which has no outgoing transitions) and I is a 

set of indices that is 

 

• finite, i.e. I = { 1, 2, …, n }, if and only if a state 

Xn+1 is a terminal state, and 

 

• infinite, i.e. I = { 1, 2, … }, if and only if there 

exists at least one index i such that any terminal 

state is not reachable from state Xi. 

 

A 

α 

A 

α 

B 
α 
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For a given transition relation R
Λ
 and a given initial 

state A, we denote a set of all permissible executions 

as Є
Λ

A (note that Є
Λ

A is empty for an initial state A 

which is also a terminal state, i.e. there is no empty 

execution). 

 

3.2. Interpretations of actions 
 

The above-introduced set Є
Λ

A (of all permissible 

executions) describes what a modeled system in a 

state A can do. However, we need a corresponding 

description from an outer (i.e. from the environment 

of a modeled system) point of view. In other words, 

we would like to abstract from any inner acts. 

Hence, we attempt to obtain such description by 

defining a set Π
Λ

A of all permissible sequences of 

actions as follows: 

 

Π
Λ

A = { ( αi )i∈I : ( (Xi, αi, Xi+1) )i∈I ∈ Є
Λ

A } 

 

i.e. Π
Λ

A represents sequences of actions which results 

from all executions that a transition system (in a state 

A) permits. However, this description has an issue 

which results from the nondeterminism of transition 

systems. For example, the two transition systems 

 

 
 

have the same set of all permissible sequences of 

actions, i.e. 

 

Π
Λ

A = Π
Λ

A′ = { αβ, αγ } 

 

which is not correct. Indeed, the transition system on 

the right always permits to execute the sequence αβ 

(and analogically the sequence αγ) but the transition 

system on the left need not permit to execute it. More 

accurately, the execution of action α can induce the 

transition to the state F where the transition system 

does not permit to execute the action β. However, the 

sets Π
Λ

A and Π
Λ

A′ do not show such difference. 

So, let us explore what happened from a modeled 

system point of view. The modeled system (in some 

state abstracted as A) is capable to participate on an 

interaction, via the action α, with its environment. 

More accurately, the modeled system can execute 

some two inner acts (abstracted as transitions to E 

and F) whose exposed parts are equal, i.e. both acts 

expose the same action α to the environment. Thus, 

the two inner acts are indistinguishable in terms of 

interaction. It depends on the modeled system which 

of inner acts is induced by an upcoming interaction 

(note that we do not attempt to model it by our 

transition system, i.e. we leave it undetermined). 

However, the two inner acts do different things and 

mainly, they have different consequences. We cannot 

fully abstract from them (as we can in automata). 

From the outer point of view, there may be different 

consequences when the action occurred. In other 

words, the action is somehow interpreted by the 

modeled system and we should still reflect this. 

Hence, we introduce an interpretation of an action 

(shortly an interpretation) as a tuple (α, Φ) written 

for clarity as 

 

α
Φ
   α ∈ Λ  Φ ⊆ Λ 

 

whereas an interpretation α
Φ
 represents an action α 

together with its consequence. In addition, we define 

a set Ψ of interpretations as follows: 

 

Ψ = { α
Φ
 : α ∈ Λ, Φ ⊆ Λ } 

 

Now, as a formal foundation for next definitions, 

we define an extended transition system as a tuple 

 

(S, Ψ, R
Ψ
) 

 

where S is an identical set of states as in original 

transition system (S, Λ, R
Λ
), Ψ is a finite set of 

interpretations and R
Ψ
 is a transition relation. More 

accurately, R
Ψ
 ⊆ S × Ψ × S, whereas 

 

(A, α
Φ(B)

, B) ∈ R
Ψ
 ⇔ (A, α, B) ∈ R

Λ
 

 

and Φ(X) is a set of actions of all outgoing transitions 

from a state X, which is defined as follows: 

 

Φ(X) = { β : (X, β, Y) ∈ R
Λ
 } 

 

It is obvious that an extended transition system still 

fully represents an original one, i.e. 

 

(S, Ψ, R
Ψ
) ⇔ (S, Λ, R

Λ
) 

 

because we only add some redundant (but useful) 

information. Not surprisingly, an extended transition 

system also preserves a meaning. 

 

 

 

A′ 

γ 

D 
α 

C 

B 

β 

A 

F 

E 

α 

C 
γ 

β 

α 

B 
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3.3. Postponed nondeterminism 
 

Despite the effort in the previous subsection, we 

still cannot obtain a description from the outer point 

of view because the extended transition system still 

is not deterministic (in terms of interpretations) in 

general. Let us explore an example 

 

 
 

where the extended transition system on the left is 

nondeterministic for the interpretations α
βγ

 and β
βγ

 in 

the states A and B respectively (note that we write all 

interpretations, e.g. α
{β,γ}

, for clarity in the form α
βγ

). 

However, the states C and D are not distinguishable 

from the outer point of view. Indeed, these states are 

reachable by the same actions (α, β) from the same 

states (A, B) and importantly, there are permitted the 

same following actions (β, γ) in these states. Hence, 

we can merge them, and thus we get a transformed 

transition system as shown on the right. Note that, in 

fact, we postpone the nondeterminism from the states 

A and B to the merged state H. 

The previous example describes situations where 

for each examined state Yi (e.g. C and D) a following 

condition is satisfied: if there exists some transition 

(X, α
Φ
, Yi), then there exists (X, α

Φ
, Yj) for any j ≠ i. 

A following example describes situations where this 

condition is not satisfied. So, let us have an extended 

transition system 

 
 

on the left. It is obvious that the state C does not 

satisfy the mentioned condition. Hence, we split it 

into the states C′ and C″, and thus we again obtain a 

transformed transition system as shown on the right. 

After that, we can merge the states C″ and D (as in 

the previous example), and thus we again postpone 

the nondeterminism from the state B. 

It should be noted that the initial state (if some is 

defined) need a special care. The initial state, e.g. A, 

has to be worked as if there exists an extra transition 

(Ə, ə
Φ(A)

, A) where Ə and ə is not used by other 

transitions. With this assumption, the split and merge 

transformations (introduced above) can be applied 

even on the initial state. 

We postpone the nondeterminism as long as it is 

not eliminated. It can be shown that we can eliminate 

the nondeterminism from any extended transition 

system. We denote the resulting transition system as 

an outer transition system that is defined as a tuple 

 

(Q, Ψ, L
Ψ
) 

 

where Q is a finite set of states (i.e. a set S after all 

split and merge transformations), Ψ is a finite set of 

interpretations and L
Ψ
 is a transition relation (i.e. a 

relation R
Ψ
 after all split and merge transformations). 

A relationship between the extended transition 

system and the appropriate outer transition system is 

just an implication, i.e. 

 

(S, Ψ, R
Ψ
) ⇒ (Q, Ψ, L

Ψ
) 

 

because we (in general) loose informations of inner 

acts. However, the appropriate extended and outer 

transition systems are not distinguishable from the 

outer (i.e. from the environment of a modeled 

system) point of view. Moreover, an outer transition 

system is deterministic (in terms of interpretations). 

 

3.4. Capability and state 
 

As an outer transition system is deterministic, it 

allows us to obtain a description of what a modeled 

system in a given state can do from the outer point of 

view. 

First, for a given transition relation L
Ψ
 and a 

given initial state A, we (analogically to Є
Λ

A) denote 

a set of all permissible executions as Є
Ψ

A. 

Now, for a given transition system (Q, Ψ, L
Ψ
) and 

a given state A from a set Q, we define a set Π
Ψ

A of 

all permissible sequences of interpretations as 

follows: 

 

Π
Ψ

A = { ( αi
Φ(Xi+1)

 )i∈I : ( (Xi, αi
Φ(Xi+1)

, Xi+1) )i∈I ∈ Є
Ψ

A } 

 

i.e. Π
Ψ

A represents sequences of interpretations 

which results from all executions that an outer 

transition system (in a state A) permits. This set is the 

needed description, and we denote it as a capability 

of a modeled system in a particular state. 

Further, we explore a relationship between states 

and capabilities. It is obvious that 

B 

A 

F 

G 

E 

D 

C 

α
βγ

 

β
βγ

 

β
βγ

 

γ
∅

 

γ
∅

 

β
∅

 

β
∅

 

B 

A 

F 

G 

E 

D 

C″ 

α
βγ

 

β
βγ

 

β
βγ

 

γ
∅

 

β
∅

 

β
∅

 

C′ 
γ
∅

 

β
∅

 

γ
∅

 

B 

A 

F 

G 

E 

D 

C 

α
βγ

 

α
βγ

 

β
βγ

 

β
βγ

 

γ
∅

 

γ
∅

 

β
∅

 
β
∅
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α
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∅
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∅

 

β
∅
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A ⇒ Π
Ψ

A 

 

which means that a state A determines a capability 

Π
Ψ

A within a particular outer transition system. In 

addition, we denote states as equal if and only if they 

determine a same capability. For example, an outer 

transition system 

 

 
 

on the left has two equal states (i.e. the state E and F) 

because appropriate capabilities are 

 

Π
Ψ

E = Π
Ψ

F = { γ
α
α

α
α

α
α

α
… } 

 

that means the transition system can execute just and 

only the same actions with the same consequences in 

both cases. Then it does not matter in which of these 

states the transition system is. Thus, we can merge 

these states without impact on any capability (note 

that it is similar procedure as in automata) and we 

get a reduced outer transition system as shown on the 

right. Consequently, after merging of all equal states, 

there does not exist any two different states X and Y 

that determine the same capability, i.e. 

 

A ⇔ Π
Ψ

A 

 

Thus, a capability both represents an outer state 

of a modeled system and describes what a modeled 

system in such state can do from the outer point of 

view. 

It becomes clear that we need to work with 

infinite sequences. In this paper, we use the notion 

Ψ
 ∞

 to denote the (infinite) set of all sequences of 

interpretations, i.e. 

 

Ψ
 ∞

 = Ψ
 *
 ∪ Ψ

 ω
 

 

where Ψ
 *
 (Kleene closure) is the set of all finite 

sequences and Ψ
 ω

 is the set of all infinite sequences 

over the set Ψ. 

 

4. Equivalence 
 

In the previous section, the notion of capability 

has been developed to be a full characterization of a 

modeled system (in a particular state) from an outer 

(i.e. from the environment of a modeled system) 

point of view. Hence, capabilities should be useful in 

determining the equivalence of systems. 

In this section, we will more generally discuss the 

equivalence of such systems that can be modeled by 

a transition system defined in the section 2 (note that 

such systems can also be described by capabilities). 

However, when are such systems equal? Systems are 

regarded as equal if they are not distinguishable from 

each other from an outer point of view. Precisely, 

systems are not equal if and only if there is some 

experiment that distinguishes them [2]. Of course, 

the main role plays an experiment scenario. Since the 

examined system can interact with its environment 

only by actions from a set Λ, some scenarios based 

on “button-pushing” are appropriate. 

In the further discussion about the equivalence, 

we will use a convenient example with two systems 

given by the transition graphs 

 

 
 

4.1. Experimenting 
 

In [2], there are more details about experimenting 

with equivalence. However, we shortly describe only 

the button-pushing experiments. 

In these experiments, a system is seen as a black 

box with buttons labeled with the actions (from a set 

Λ), and no other controls. If the system can execute 

the action α, then it is possible to press the α-button 

and then the system will change state. If the system 

cannot execute α, then the α-button is locked; but the 

experimenter can press the button and discover that 

the system cannot execute the action α (and continue 

experimenting). 

For the first experimenting, we use a lighted-

button scenario. The buttons have lights inside them 

and the light on the button is lit when that button is 

locked. In other words, the experimenter can see at 

every stage, which actions are possible and which are 

not, without changing the state of the system. In 

addition, the experimenter can reset the system (i.e. 

restore the state that the system had before the 

experimenting) at any stage. Formally, a lighted-

button experiment is a sequence L0 α0 L1 … αn Ln+1 

γ G 
α 

K 

H 

β 

A 

C 

B 

α 

E 

γ 

β 

α 

D 

β 

F 

β 

C 
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A 
γ
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alternating between sets Li of locked buttons and αi-

buttons where αi ∉ Li. Hence, the sequences 

 

 { β, γ }  α  { α, γ } 

 { β, γ }  α  { α, γ }  β  { α, β } 

 { β, γ }  α  { α, γ }  β  { α, β }  γ  { α, β, γ } 

 { β, γ }  α  { α, γ }  β  { α, β, γ } 

 

are all experiments that can be done on both systems 

from our example. In other words, there is no one in 

the experiments, which can distinguish both systems. 

Hence, both systems are equal in terms of lighted-

button experiment. 

For the next experimenting, we use a duplicator 

scenario. It is a modified lighted-button scenario in 

which the experimenter can (instead of resetting the 

system) make any number of copies of the system at 

any stage, and perform independent experiments on 

the copies. Note that using of copies is the same 

thing as if the experimenter could restore the state 

that the system had in any previous stage (i.e. not 

only before the experimenting at all). Formally, the 

trees 

 

 { β, γ }  α  { α, γ }  » { β, γ }  α  { α, γ }  » 

 »  { α, γ }  β  { α, β } »  { α, γ }  β  { α, β } 

 »  { α, γ }  β  { α, β } »  { α, γ }  β  { α, β, γ } 

 »  { α, γ }  β  { α, β } »  { α, γ }  β  { α, β } 

 … … 

 

are two experiments that could be done on the left-

hand and right-hand system (respectively) from our 

example (note that » represents duplication of the 

system). Indeed, the copies of the original systems 

made after executing α will show differences. The 

left-hand copies never prevent the experimenter from 

executing γ after β (because it seems the original 

system is in the state B). However, the right-hand 

copies prevent him but only sometimes (because the 

original system is surely in the state G). Hence, the 

systems certainly are not equal in terms of duplicator 

experiment. 

 

4.2. Using bisimulation 
 

Bisimulation equivalence is intended to identify 

transition systems with the same branching structure, 

and which thus can simulate each other in a stepwise 

manner [1]. As there are various formal definitions 

of bisimulation in [1, 4, 7], we appropriately rephrase 

the definition to the following form. 

For given transition systems (S1, Λ, R
Λ

1) and (S2, 

Λ, R
Λ

2), a bisimulation is a relation M ⊆ S1 × S2 with 

the following property: 

 

 ∀ (X, Y) ∈ M : 

(a) ∀ (X, α, X’) ∈ R
Λ

1 ∃ (Y, α, Y’) ∈ R
Λ

2 : 

(X’, Y’) ∈ M 

(b) ∀ (Y, α, Y’) ∈ R
Λ

2 ∃ (X, α, X’) ∈ R
Λ

1 : 

(X’, Y’) ∈ M 

 

Consequently, the transition systems in the states 

A1 ∈ S1 and A2 ∈ S2 are bisimulation equivalent (or 

shortly bisimilar), denoted A1 ~ A2, if there exists a 

bisimulation M such that (A1, A2) ∈ M. 

Now, we apply bisimulation equivalence to our 

example. It is necessary to find a bisimulation M and 

thus let us try the following relation 

 

{  (A, F),  (B, G),  (C, G),  (D, H),  (E, K)  } 

 

However, the tuples (B, G) and (C, G) do not satisfy 

the condition (b) from the definition. It is because 

there are missing the tuples (D, K) and (E, H) in the 

relation. We add them. Thus, let us try the following 

relation 

 

{  (A, F),  (B, G),  (C, G),  (D, H),  (E, K),    

(D, K),  (E, H)  } 

 

Nevertheless, the new tuples (D, K) and (E, H) do 

not satisfy the conditions (a) and (b), respectively. 

This is a conflict; a bisimulation containing the tuple 

(A, F) cannot be found. Hence, the systems definitely 

are not equal in terms of bisimulation (or shortly, 

they are not bisimilar). 

Consequently, bisimulation does not correspond 

to the lighted-button experiment in general. In [4], 

however, is stated: “…we only wish to distinguish 

between two agents P and Q if the distinction can be 

detected by an external agent interacting with each of 

them…” and a lighted-button experiment is used to 

advocate the needs of bisimulation. Similarly, in [7] 

is stated: “This is the notion of strong bisimulation, 

which takes the view that the only thing we can 

detect about a given process state is what events it 

can do, and that to be equivalent two processes must 

have the same set of events available immediately, 

with these events leading to processes that are 

themselves equivalent.” Nevertheless, our example 

shows that bisimulation is too strong for the cited 

purposes (i.e. for lighted-button scenario). 

 

4.3. Using capabilities 
 

The notion of capability has been developed to be 

a full characterization of a modeled system (in a 

particular state) from an outer point of view. Thus, it 

should be enough to compare the particular 
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capabilities for determining the equivalence. Let us 

apply this idea to our example. 

First, we should derive the sets Є
Ψ

A and Є
Ψ

F of all 

permissible executions for given transition systems 

in the states A and F, respectively. These sets are as 

follows: 

 

Є
Ψ

A = {  (A, α
β
, B)  (B, β

γ
, D)  (D, γ

∅
, E), 

(A, α
β
, C)  (C, β

∅
, E)  } 

Є
Ψ

F = {  (F, α
β
, G)  (G, β

γ
, H)  (H, γ

∅
, K), 

(F, α
β
, G)  (G, β

∅
, K)  } 

 

Now, we can derive the capabilities Π
Ψ

A and Π
Ψ

F 

(i.e. sets of permissible sequences of interpretations) 

from the Є
Ψ

A and Є
Ψ

F, respectively. The capabilities 

are as follows: 

 

Π
Ψ

A = { α
β
β

γ
γ
∅

, α
β
β
∅

 }  Π
Ψ

F = { α
β
β

γ
γ
∅

, α
β
β
∅

 } 

 

Hence, the systems are equal in terms of capability. 

Unlike the bisimulation, the comparing of particular 

capabilities matches to the lighted-button experiment 

here. Of course, it is not a proof that it correspond in 

general. We are going to proof it in the further work. 

 

5. Algebraic structure 
 

In this section, we define a composite algebraic 

structure based on a set of capabilities (i.e. not of the 

syntax expressions as the calculus in CCS). Thus, a 

set К of capabilities is defined as follows: 

 

К = 2
∆
  ∆ = Ψ

 ∞
 

 

that means К is a (infinite) set of all subsets of a set 

Ψ
 ∞

 of all sequences of interpretations. Note that a 

capability Π
Ψ

X is a subset of a set Ψ
 ∞

, i.e. we can 

write 

Π
Ψ

X ∈ К 

 

Note that К is determined only by a given set Λ of 

actions. That means not all capabilities from К are 

capabilities of a particular outer transition system. 

Simply, a set К is a universe of capabilities (for 

given sets Λ). 

Further, we introduce variables that take values 

from К. These variables are written as letters in bold 

(i.e. A, B, C, …) and their semantics is defined as 

follows: 

 

A = Π
Ψ

A 

 

that means the variable A represents both an outer 

state A and a capability of an outer transition system 

in this state. 

Now, we define the structure (К, +) as an abelian 

monoid. Thus, the operation + has to be a function 

К × К → К that satisfies axioms of closure, identity, 

associativity and commutativity. Accordingly, we 

define + as the union of two capabilities, i.e. we can 

write an equation C = A + B as 

 

Π
Ψ

C = Π
Ψ

A ∪ Π
Ψ

B 

 

and it is easy to show that our operation + satisfies 

mentioned axioms: 

 

• Closure axiom – Both Π
Ψ

A and Π
Ψ

B are subsets of 

Ψ
 ∞

. Further, К is a power set of Ψ
 ∞

, i.e. К 

contains all subsets of Ψ
 ∞

. Finally, because the 

union of subsets is still a subset, К contains also 

Π
Ψ

C. Thus, a capability A + B is from К for any 

capabilities A and B. 

 

• Identity axiom – A set К (as a power set) contains 

the empty set, which means no capability. So, we 

introduce the identity element 0 (written as zero 

in bold) defined as follows: 

 

0 = ∅ 

 

Thus, because the union of a set and the empty 

set is a set itself, the equation A + 0 = 0 + A = A 

is valid for any capability A. 

 

• Associativity and commutativity axiom – As the 

union operation is associative and commutative, 

the equations (A + B) + C = A + (B + C) and 

A + B = B + A are valid for any capabilities A, B 

and C. 

 

Thus, we have obtained a simple algebraic structure 

but we need one more operator. 

Therefore, we define the composite algebraic 

structure (К, +, Λ, ·) as an extension of the structure 

(К, +). The operation · is a function Λ × К → К that 

satisfies the axiom of closure and right-associativity. 

Accordingly, we define · as the concatenation of an 

interpretation and a capability, i.e. we can write an 

equation B = α·A as 

 

Π
Ψ

B = { α
Φ(A)

ζ : ζ ∈ Π
Ψ

A }  Π
Ψ

A ≠ ∅ 
 

                       Φ(A) = { α : α
Φ
ξ ∈ Π

Ψ
A } 

or 

Π
Ψ

B = { α
∅

 }  Π
Ψ

A = ∅ 
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If we use some properties of regular and ω-regular 

languages discussed in [1], it is again easy to show 

that our operation · satisfies the closure axiom. First, 

if ζ is from Ψ
 *
, then α

Φ(A)
ζ is from Ψ

 *
, because the 

concatenation of two regular languages is another 

regular language. Second, if ζ is from Ψ
 ω

, then α
Φ(A)

ζ 

is from Ψ
 ω

, because the concatenation of a regular 

and an ω-regular language is another ω-regular 

language. In all cases, both α
∅

 and α
Φ(A)

ζ are from 

Ψ
 ∞

, i.e. Π
Ψ

B is a subset of Ψ
 ∞

, and then Π
Ψ

B is from 

К. Thus, a capability α·A is from К for any action α 

and any capability A. 

Now, for illustration, we present our algebraic 

structure in a few interesting examples. First, let us 

have a system given by the transition graph 

 
that we express by the simple equation 

 

A = α·A 

 

whose solution (the capability) is the following set of 

one permissible sequence of interpretations: 

 

A = { α
α
α

α
α

α
… } 

 

Subsequently, we check this solution by substituting 

it into the right side of the equation, i.e. 

 

α·A = { α
α
α

α
α

α
… } 

 

and we obtain the same set as A. Thus, the solution is 

correct. Indeed, if the infinite sequence α
α
α

α
α

α
… is 

prefixed by one interpretation α
α
, it is still just the 

infinite sequence α
α
α

α
α

α
… . Second, let us have a 

little different system, i.e. the transition graph, the 

related equation, and its significantly different 

solution as follows: 

 
A = α·A + α·0 

 

A = { α
∅

, α
α
α
∅

, α
α
α

α
α
∅

, … } 

 

Subsequently, we check the solution by substitution: 

 

α·A = { α
α
α
∅

, α
α
α

α
α
∅

, … }  α·0 = { α
∅

 } 
 

α·A + α·0 = { α
∅

, α
α
α
∅

, α
α
α

α
α
∅

, … } 

 

At last, let us have a more complex system, i.e. the 

transition graph, the related system of equations, and 

its solution (three capabilities) as follows: 

 

 
 

A = α·A + α·B + β·C 

B = 0 

C = β·C 

 

A = { α
∅

, α
αβ

α
∅

, …, β
β
β

β
…, α

αβ
β

β
β

β
…,  

α
αβ

α
αβ

β
β
β

β
…, … } 

B = ∅  C = { β
β
β

β
… } 

 

Subsequently, we check the solution by substitution: 

 

α·A = { α
αβ

α
∅

, α
αβ

α
αβ

α
∅

, …, α
αβ

β
β
β

β
…,  

α
αβ

α
αβ

β
β
β

β
…, … } 

α·B = { α
∅

 } β·C = { β
β
β

β
… } 

α·A + α·B + β·C = { α
∅

, α
αβ

α
∅

, …, β
β
β

β
…,  

α
αβ

β
β
β

β
…, α

αβ
α

αβ
β

β
β

β
…, … } 

 

6. Conclusion 
 

In this paper, we have pointed out the importance 

of what is permissible (over what is possible) for a 

modeled system. In addition, we showed that for any 

transition system (used as model, see section 2) there 

can be constructed an outer transition system, which 

is always deterministic (in terms of interpretations) 

and still holds the same capabilities. Moreover, we 

showed that the capabilities identify the states of 

outer transition system (that is minimized, i.e. has no 

equal states). It simplifies many examinations of a 

modeled system (it also allowed us to define our 

algebraic structure) and it will be useful even in the 

further theoretical work. 

Further, we discussed the equivalence of systems 

and examined properties of bisimulation equivalence 

in terms of experimenting scenarios. After that, we 

discovered that bisimulation is too strong for lighted-

button scenario (it simply distinguishes systems that 

are equal in terms of this scenario). The comparing 

of particular capabilities (unlike bisimulation) seems 

to correspond to the lighted-button scenario. Hence, 

we are going to proof it in the further work. 

In our previous work [6], the simple calculus has 

been introduced. Although this calculus overcome 

A 

α 

C 

β 

B 

β 

α 

A 

α 

0 
α 

A 

α 
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some limitations of CCS calculus, there is an issue 

(in the equivalence of states), which prevented us 

from developing an algebraic structure. In this paper, 

we improved the notion of capability and showed 

that it is possible to introduce a proper algebraic 

structure over capabilities (although it is only a 

preview of the intended one). Our algebraic structure 

has two main differences from CCS calculus. First, it 

is simply an algebraic structure (e.g., it has just one 

usual kind of equation, which can replace several 

kinds from CCS calculus). Second, all constants and 

expressions have representers (i.e. sets Π
Ψ
 in our 

case). At least, both differences simplify theoretical 

reasoning and allow us to utilize knowledge of 

abstract algebra. 
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