
Capabilities and Equivalence of Systems

and a Preview of Related Algebraic Structure

Petr Pinkas, Jana Klečková

Department of Computer Science and Engineering, University of West Bohemia

Abstract

In this paper, we propose a different approach to

modeling of a system that focuses on the capability of

the system to participate in interactions with its

environment. Accordingly, we use a mathematical

object to describe this capability. In addition, we

show an equivalency (from an outer point of view)

between capabilities and states. Furthermore, we

more generally discuss the equivalence of systems

where comparison of capabilities and bisimulation

are related. Finally, we define a composite algebraic

structure and then show that capabilities of the

system are a solution of a system of equations in this

algebraic structure.

1. Introduction

The effort to rigorously modeling critical systems

and exploring their properties is becoming more and

more common. This effort ranges from the UML [3]

to the model checking technique [1]. The model

checking technique is a mature formal method based

on operational semantics and mainly on exhaustive

analysis of state space by brute force. However,

computer science still looks up to mathematics,

where it is possible to work with entire spaces at

once. Such possibility together with preserving a

close connection to operational semantics would be

ideal. One attempt in this direction was made in [5]

where a π-calculus was introduced.

This paper focuses on CCS (Calculus of

Communicating Systems) [4], the predecessor and

basis of π-calculus. Moreover, we are interested only

in a narrow subset of CCS that forms the fundament

of modeling a system in a CCS approach.

The subset of CCS is described as follows. Let us

have a set Act of actions and a set K of constants.

Then, a set З of expressions is recursively defined as

follows:

З = { A, α·E, ∑i∈I Ei : A ∈ K; α ∈ Act; E, Ei ∈ З }

where operations · and + are implicitly introduced. It

is obvious that a set З is closed under both operations

by definition. Consequently, the tuple (З, +, ·) forms

a simple algebraic structure and we can write e.g.

E = α·(F + β·A) E, F ∈ З α, β ∈ Act A ∈ K

So far, expressions from З have no meaning. Hence,

the meaning is given by the transition system (З, Act,

Я), where Я is the transition relation (i.e. a subset of

З × Act × З) generated by two transition rules. These

rules (related to operations · and +, respectively) are

defined as follows:

α ∈ Act ∧ E ∈ З ⇔ (α·E, α, E) ∈ Я

j ∈ I ∧ (Ej, α, F) ∈ Я ⇔ (∑i∈I Ei, α, F) ∈ Я

that means, for example, an expression α·E becomes

E by executing an action α (i.e. by participating on a

proper handshake). See details in [4]. Despite the

previous effort, constants from K still have no

meaning. Moreover, elements from З remain as

syntax formations (with no other mutual relations

than the two rules defined above). For illustration, let

us have a system given by the transition graph

and let us try to express it by our (so far described)

subset of CCS. Thus, we make two attempts:

1) A = α·A 2) E = α·E α ∈ Act A ∈ K E ∈ З

which result into a failure. Both equations are invalid

in terms of the mentioned algebraic structure (e.g. A

and α·A are different elements from З). Even the

mentioned rules cannot help. First, we know that α·A

can become A, but we do not know if α·A equals A

(and consequently if α·A can become α·A) because

A

α

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 72

http://www.infonomics-society.org/IJICR/Contents%20Page%20Volume%201%20Issue%201%20and%202.pdf

we have no meaning of A. Second, it is clear that α·E

cannot become α·E for any E from З \ K. In [4] it is

solved by a workaround, i.e. by a defining equation

A =
def

 α·A

that gives a meaning to the constant A. In addition,

normal equations (e.g. E + F = F + E) are meant as

comparison of derivatives (i.e. transition trees, see

[4]). Now, with defining and derivatives equations,

our subset of CCS is complete.

However, it is obvious that the CCS is no longer

an algebraic structure.

2. Transition system

In the CCS approach, the definition of transition

relation follows the structure of expressions and thus

gives the semantics to them [4]. Nevertheless, in our

approach, a transition relation and its meaning is the

basis. Everything else is obtained by exploration and

formalization of properties of this basis.

At first, however, we formally define a transition

system as a tuple

(S, Λ, R
Λ
)

where S is a finite set of states, Λ is a finite set of

actions and R
Λ
 is a transition relation. More

accurately, R
Λ
 ⊆ S × Λ × S, whereas

(A, α, B) ∈ R
Λ
 A, B ∈ S α ∈ Λ

if and only if exists a transition from state A to state

B labeled with α. The transition system is always just

in one of its states, i.e. it may arise at most one

transition at once. Thus, execution has the form of a

sequence of transitions.

Now we give a meaning to our transition system.

Each transition represents an inner (causal) act of a

modeled system. A part of the inner act is always

exposed to the environment of the modeled system

and this part is represented by the action in our

transition system. However, the action is not meant

as an outer symptom of the inner act; the action is

meant as a complement in an interaction (i.e. it can

be seen as the one side in a handshake). Therefore,

the action can be executed only together with its

complementary action from the environment (usually

from the other system). Consequently, the execution

of the action is a necessary condition for execution of

a rest of the inner act.

3. Modeling and capabilities

In this section, we improve the semantics of our

(inner) transition system. In addition, we develop an

appropriate outer transition system (i.e. a description

of a modeled system from an outer point of view).

Finally, we introduce the capabilities (i.e. an outer

transition system expressed purely by the actions).

3.1. Permissible executions

Usually, there are possible many executions (i.e.

sequences of transitions) of our transition system but

only some of them well characterize what a modeled

system can do. Hence, we pay an attention to what a

transition system permits, instead of what is possible

(as an execution). It lead us (at first intuitively) to

introduce a permissible executions. For example, let

us have two transition systems

in states A. Both transition systems have one infinite

possible execution (with sequence of actions ααα…)

and infinitely many finite possible executions (with

sequences of actions α, αα, ααα, …). Does it mean

they are equal? No, the transition system on the left

permits just the mentioned infinite execution, which

means the modeled system is still capable to execute

the action α. However, the transition system on the

right permits only the mentioned finite executions. It

means the modeled system is capable to execute any

number of actions α, but not infinitely many (note

that the number of actions is not predictable).

Accordingly, we formally define a permissible

execution as a particular (and possibly infinite) walk

on transition graph, i.e. as a sequence of transitions

((Xi, αi, Xi+1))i∈I X1 = A (Xi, αi, Xi+1) ∈ R
Λ

where R
Λ
 is a transition relation, A is a non-terminal

initial state of execution (note that a terminal state is

a state which has no outgoing transitions) and I is a

set of indices that is

• finite, i.e. I = { 1, 2, …, n }, if and only if a state

Xn+1 is a terminal state, and

• infinite, i.e. I = { 1, 2, … }, if and only if there

exists at least one index i such that any terminal

state is not reachable from state Xi.

A

α

A

α

B
α

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 73

For a given transition relation R
Λ
 and a given initial

state A, we denote a set of all permissible executions

as Є
Λ

A (note that Є
Λ

A is empty for an initial state A

which is also a terminal state, i.e. there is no empty

execution).

3.2. Interpretations of actions

The above-introduced set Є
Λ

A (of all permissible

executions) describes what a modeled system in a

state A can do. However, we need a corresponding

description from an outer (i.e. from the environment

of a modeled system) point of view. In other words,

we would like to abstract from any inner acts.

Hence, we attempt to obtain such description by

defining a set Π
Λ

A of all permissible sequences of

actions as follows:

Π
Λ

A = { (αi)i∈I : ((Xi, αi, Xi+1))i∈I ∈ Є
Λ

A }

i.e. Π
Λ

A represents sequences of actions which results

from all executions that a transition system (in a state

A) permits. However, this description has an issue

which results from the nondeterminism of transition

systems. For example, the two transition systems

have the same set of all permissible sequences of

actions, i.e.

Π
Λ

A = Π
Λ

A′ = { αβ, αγ }

which is not correct. Indeed, the transition system on

the right always permits to execute the sequence αβ

(and analogically the sequence αγ) but the transition

system on the left need not permit to execute it. More

accurately, the execution of action α can induce the

transition to the state F where the transition system

does not permit to execute the action β. However, the

sets Π
Λ

A and Π
Λ

A′ do not show such difference.

So, let us explore what happened from a modeled

system point of view. The modeled system (in some

state abstracted as A) is capable to participate on an

interaction, via the action α, with its environment.

More accurately, the modeled system can execute

some two inner acts (abstracted as transitions to E

and F) whose exposed parts are equal, i.e. both acts

expose the same action α to the environment. Thus,

the two inner acts are indistinguishable in terms of

interaction. It depends on the modeled system which

of inner acts is induced by an upcoming interaction

(note that we do not attempt to model it by our

transition system, i.e. we leave it undetermined).

However, the two inner acts do different things and

mainly, they have different consequences. We cannot

fully abstract from them (as we can in automata).

From the outer point of view, there may be different

consequences when the action occurred. In other

words, the action is somehow interpreted by the

modeled system and we should still reflect this.

Hence, we introduce an interpretation of an action

(shortly an interpretation) as a tuple (α, Φ) written

for clarity as

α
Φ
 α ∈ Λ Φ ⊆ Λ

whereas an interpretation α
Φ
 represents an action α

together with its consequence. In addition, we define

a set Ψ of interpretations as follows:

Ψ = { α
Φ
 : α ∈ Λ, Φ ⊆ Λ }

Now, as a formal foundation for next definitions,

we define an extended transition system as a tuple

(S, Ψ, R
Ψ
)

where S is an identical set of states as in original

transition system (S, Λ, R
Λ
), Ψ is a finite set of

interpretations and R
Ψ
 is a transition relation. More

accurately, R
Ψ
 ⊆ S × Ψ × S, whereas

(A, α
Φ(B)

, B) ∈ R
Ψ
 ⇔ (A, α, B) ∈ R

Λ

and Φ(X) is a set of actions of all outgoing transitions

from a state X, which is defined as follows:

Φ(X) = { β : (X, β, Y) ∈ R
Λ
 }

It is obvious that an extended transition system still

fully represents an original one, i.e.

(S, Ψ, R
Ψ
) ⇔ (S, Λ, R

Λ
)

because we only add some redundant (but useful)

information. Not surprisingly, an extended transition

system also preserves a meaning.

A′

γ

D
α

C

B

β

A

F

E

α

C
γ

β

α

B

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 74

3.3. Postponed nondeterminism

Despite the effort in the previous subsection, we

still cannot obtain a description from the outer point

of view because the extended transition system still

is not deterministic (in terms of interpretations) in

general. Let us explore an example

where the extended transition system on the left is

nondeterministic for the interpretations α
βγ

 and β
βγ

 in

the states A and B respectively (note that we write all

interpretations, e.g. α
{β,γ}

, for clarity in the form α
βγ

).

However, the states C and D are not distinguishable

from the outer point of view. Indeed, these states are

reachable by the same actions (α, β) from the same

states (A, B) and importantly, there are permitted the

same following actions (β, γ) in these states. Hence,

we can merge them, and thus we get a transformed

transition system as shown on the right. Note that, in

fact, we postpone the nondeterminism from the states

A and B to the merged state H.

The previous example describes situations where

for each examined state Yi (e.g. C and D) a following

condition is satisfied: if there exists some transition

(X, α
Φ
, Yi), then there exists (X, α

Φ
, Yj) for any j ≠ i.

A following example describes situations where this

condition is not satisfied. So, let us have an extended

transition system

on the left. It is obvious that the state C does not

satisfy the mentioned condition. Hence, we split it

into the states C′ and C″, and thus we again obtain a

transformed transition system as shown on the right.

After that, we can merge the states C″ and D (as in

the previous example), and thus we again postpone

the nondeterminism from the state B.

It should be noted that the initial state (if some is

defined) need a special care. The initial state, e.g. A,

has to be worked as if there exists an extra transition

(Ə, ə
Φ(A)

, A) where Ə and ə is not used by other

transitions. With this assumption, the split and merge

transformations (introduced above) can be applied

even on the initial state.

We postpone the nondeterminism as long as it is

not eliminated. It can be shown that we can eliminate

the nondeterminism from any extended transition

system. We denote the resulting transition system as

an outer transition system that is defined as a tuple

(Q, Ψ, L
Ψ
)

where Q is a finite set of states (i.e. a set S after all

split and merge transformations), Ψ is a finite set of

interpretations and L
Ψ
 is a transition relation (i.e. a

relation R
Ψ
 after all split and merge transformations).

A relationship between the extended transition

system and the appropriate outer transition system is

just an implication, i.e.

(S, Ψ, R
Ψ
) ⇒ (Q, Ψ, L

Ψ
)

because we (in general) loose informations of inner

acts. However, the appropriate extended and outer

transition systems are not distinguishable from the

outer (i.e. from the environment of a modeled

system) point of view. Moreover, an outer transition

system is deterministic (in terms of interpretations).

3.4. Capability and state

As an outer transition system is deterministic, it

allows us to obtain a description of what a modeled

system in a given state can do from the outer point of

view.

First, for a given transition relation L
Ψ
 and a

given initial state A, we (analogically to Є
Λ

A) denote

a set of all permissible executions as Є
Ψ

A.

Now, for a given transition system (Q, Ψ, L
Ψ
) and

a given state A from a set Q, we define a set Π
Ψ

A of

all permissible sequences of interpretations as

follows:

Π
Ψ

A = { (αi
Φ(Xi+1)

)i∈I : ((Xi, αi
Φ(Xi+1)

, Xi+1))i∈I ∈ Є
Ψ

A }

i.e. Π
Ψ

A represents sequences of interpretations

which results from all executions that an outer

transition system (in a state A) permits. This set is the

needed description, and we denote it as a capability

of a modeled system in a particular state.

Further, we explore a relationship between states

and capabilities. It is obvious that

B

A

F

G

E

D

C

α
βγ

β
βγ

β
βγ

γ
∅

γ
∅

β
∅

β
∅

B

A

F

G

E

D

C″

α
βγ

β
βγ

β
βγ

γ
∅

β
∅

β
∅

C′
γ
∅

β
∅

γ
∅

B

A

F

G

E

D

C

α
βγ

α
βγ

β
βγ

β
βγ

γ
∅

γ
∅

β
∅

β
∅

B

A

F

G

E

H

α
βγ

β
βγ

γ
∅

γ
∅

β
∅

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 75

A ⇒ Π
Ψ

A

which means that a state A determines a capability

Π
Ψ

A within a particular outer transition system. In

addition, we denote states as equal if and only if they

determine a same capability. For example, an outer

transition system

on the left has two equal states (i.e. the state E and F)

because appropriate capabilities are

Π
Ψ

E = Π
Ψ

F = { γ
α
α

α
α

α
α

α
… }

that means the transition system can execute just and

only the same actions with the same consequences in

both cases. Then it does not matter in which of these

states the transition system is. Thus, we can merge

these states without impact on any capability (note

that it is similar procedure as in automata) and we

get a reduced outer transition system as shown on the

right. Consequently, after merging of all equal states,

there does not exist any two different states X and Y

that determine the same capability, i.e.

A ⇔ Π
Ψ

A

Thus, a capability both represents an outer state

of a modeled system and describes what a modeled

system in such state can do from the outer point of

view.

It becomes clear that we need to work with

infinite sequences. In this paper, we use the notion

Ψ
 ∞

 to denote the (infinite) set of all sequences of

interpretations, i.e.

Ψ
 ∞

 = Ψ
 *
 ∪ Ψ

 ω

where Ψ
 *
 (Kleene closure) is the set of all finite

sequences and Ψ
 ω

 is the set of all infinite sequences

over the set Ψ.

4. Equivalence

In the previous section, the notion of capability

has been developed to be a full characterization of a

modeled system (in a particular state) from an outer

(i.e. from the environment of a modeled system)

point of view. Hence, capabilities should be useful in

determining the equivalence of systems.

In this section, we will more generally discuss the

equivalence of such systems that can be modeled by

a transition system defined in the section 2 (note that

such systems can also be described by capabilities).

However, when are such systems equal? Systems are

regarded as equal if they are not distinguishable from

each other from an outer point of view. Precisely,

systems are not equal if and only if there is some

experiment that distinguishes them [2]. Of course,

the main role plays an experiment scenario. Since the

examined system can interact with its environment

only by actions from a set Λ, some scenarios based

on “button-pushing” are appropriate.

In the further discussion about the equivalence,

we will use a convenient example with two systems

given by the transition graphs

4.1. Experimenting

In [2], there are more details about experimenting

with equivalence. However, we shortly describe only

the button-pushing experiments.

In these experiments, a system is seen as a black

box with buttons labeled with the actions (from a set

Λ), and no other controls. If the system can execute

the action α, then it is possible to press the α-button

and then the system will change state. If the system

cannot execute α, then the α-button is locked; but the

experimenter can press the button and discover that

the system cannot execute the action α (and continue

experimenting).

For the first experimenting, we use a lighted-

button scenario. The buttons have lights inside them

and the light on the button is lit when that button is

locked. In other words, the experimenter can see at

every stage, which actions are possible and which are

not, without changing the state of the system. In

addition, the experimenter can reset the system (i.e.

restore the state that the system had before the

experimenting) at any stage. Formally, a lighted-

button experiment is a sequence L0 α0 L1 … αn Ln+1

γ G
α

K

H

β

A

C

B

α

E

γ

β

α

D

β

F

β

C

B

A
γ

α

F
β

γ

α
γ

γ
α

E

α
α
 C

A
γ

α

β
γ

α
γ

E

α
α

B

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 76

alternating between sets Li of locked buttons and αi-

buttons where αi ∉ Li. Hence, the sequences

 { β, γ } α { α, γ }

 { β, γ } α { α, γ } β { α, β }

 { β, γ } α { α, γ } β { α, β } γ { α, β, γ }

 { β, γ } α { α, γ } β { α, β, γ }

are all experiments that can be done on both systems

from our example. In other words, there is no one in

the experiments, which can distinguish both systems.

Hence, both systems are equal in terms of lighted-

button experiment.

For the next experimenting, we use a duplicator

scenario. It is a modified lighted-button scenario in

which the experimenter can (instead of resetting the

system) make any number of copies of the system at

any stage, and perform independent experiments on

the copies. Note that using of copies is the same

thing as if the experimenter could restore the state

that the system had in any previous stage (i.e. not

only before the experimenting at all). Formally, the

trees

 { β, γ } α { α, γ } » { β, γ } α { α, γ } »

 » { α, γ } β { α, β } » { α, γ } β { α, β }

 » { α, γ } β { α, β } » { α, γ } β { α, β, γ }

 » { α, γ } β { α, β } » { α, γ } β { α, β }

 … …

are two experiments that could be done on the left-

hand and right-hand system (respectively) from our

example (note that » represents duplication of the

system). Indeed, the copies of the original systems

made after executing α will show differences. The

left-hand copies never prevent the experimenter from

executing γ after β (because it seems the original

system is in the state B). However, the right-hand

copies prevent him but only sometimes (because the

original system is surely in the state G). Hence, the

systems certainly are not equal in terms of duplicator

experiment.

4.2. Using bisimulation

Bisimulation equivalence is intended to identify

transition systems with the same branching structure,

and which thus can simulate each other in a stepwise

manner [1]. As there are various formal definitions

of bisimulation in [1, 4, 7], we appropriately rephrase

the definition to the following form.

For given transition systems (S1, Λ, R
Λ

1) and (S2,

Λ, R
Λ

2), a bisimulation is a relation M ⊆ S1 × S2 with

the following property:

 ∀ (X, Y) ∈ M :

(a) ∀ (X, α, X’) ∈ R
Λ

1 ∃ (Y, α, Y’) ∈ R
Λ

2 :

(X’, Y’) ∈ M

(b) ∀ (Y, α, Y’) ∈ R
Λ

2 ∃ (X, α, X’) ∈ R
Λ

1 :

(X’, Y’) ∈ M

Consequently, the transition systems in the states

A1 ∈ S1 and A2 ∈ S2 are bisimulation equivalent (or

shortly bisimilar), denoted A1 ~ A2, if there exists a

bisimulation M such that (A1, A2) ∈ M.

Now, we apply bisimulation equivalence to our

example. It is necessary to find a bisimulation M and

thus let us try the following relation

{ (A, F), (B, G), (C, G), (D, H), (E, K) }

However, the tuples (B, G) and (C, G) do not satisfy

the condition (b) from the definition. It is because

there are missing the tuples (D, K) and (E, H) in the

relation. We add them. Thus, let us try the following

relation

{ (A, F), (B, G), (C, G), (D, H), (E, K),

(D, K), (E, H) }

Nevertheless, the new tuples (D, K) and (E, H) do

not satisfy the conditions (a) and (b), respectively.

This is a conflict; a bisimulation containing the tuple

(A, F) cannot be found. Hence, the systems definitely

are not equal in terms of bisimulation (or shortly,

they are not bisimilar).

Consequently, bisimulation does not correspond

to the lighted-button experiment in general. In [4],

however, is stated: “…we only wish to distinguish

between two agents P and Q if the distinction can be

detected by an external agent interacting with each of

them…” and a lighted-button experiment is used to

advocate the needs of bisimulation. Similarly, in [7]

is stated: “This is the notion of strong bisimulation,

which takes the view that the only thing we can

detect about a given process state is what events it

can do, and that to be equivalent two processes must

have the same set of events available immediately,

with these events leading to processes that are

themselves equivalent.” Nevertheless, our example

shows that bisimulation is too strong for the cited

purposes (i.e. for lighted-button scenario).

4.3. Using capabilities

The notion of capability has been developed to be

a full characterization of a modeled system (in a

particular state) from an outer point of view. Thus, it

should be enough to compare the particular

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 77

capabilities for determining the equivalence. Let us

apply this idea to our example.

First, we should derive the sets Є
Ψ

A and Є
Ψ

F of all

permissible executions for given transition systems

in the states A and F, respectively. These sets are as

follows:

Є
Ψ

A = { (A, α
β
, B) (B, β

γ
, D) (D, γ

∅
, E),

(A, α
β
, C) (C, β

∅
, E) }

Є
Ψ

F = { (F, α
β
, G) (G, β

γ
, H) (H, γ

∅
, K),

(F, α
β
, G) (G, β

∅
, K) }

Now, we can derive the capabilities Π
Ψ

A and Π
Ψ

F

(i.e. sets of permissible sequences of interpretations)

from the Є
Ψ

A and Є
Ψ

F, respectively. The capabilities

are as follows:

Π
Ψ

A = { α
β
β

γ
γ
∅

, α
β
β
∅

 } Π
Ψ

F = { α
β
β

γ
γ
∅

, α
β
β
∅

 }

Hence, the systems are equal in terms of capability.

Unlike the bisimulation, the comparing of particular

capabilities matches to the lighted-button experiment

here. Of course, it is not a proof that it correspond in

general. We are going to proof it in the further work.

5. Algebraic structure

In this section, we define a composite algebraic

structure based on a set of capabilities (i.e. not of the

syntax expressions as the calculus in CCS). Thus, a

set К of capabilities is defined as follows:

К = 2
∆
 ∆ = Ψ

 ∞

that means К is a (infinite) set of all subsets of a set

Ψ
 ∞

 of all sequences of interpretations. Note that a

capability Π
Ψ

X is a subset of a set Ψ
 ∞

, i.e. we can

write

Π
Ψ

X ∈ К

Note that К is determined only by a given set Λ of

actions. That means not all capabilities from К are

capabilities of a particular outer transition system.

Simply, a set К is a universe of capabilities (for

given sets Λ).

Further, we introduce variables that take values

from К. These variables are written as letters in bold

(i.e. A, B, C, …) and their semantics is defined as

follows:

A = Π
Ψ

A

that means the variable A represents both an outer

state A and a capability of an outer transition system

in this state.

Now, we define the structure (К, +) as an abelian

monoid. Thus, the operation + has to be a function

К × К → К that satisfies axioms of closure, identity,

associativity and commutativity. Accordingly, we

define + as the union of two capabilities, i.e. we can

write an equation C = A + B as

Π
Ψ

C = Π
Ψ

A ∪ Π
Ψ

B

and it is easy to show that our operation + satisfies

mentioned axioms:

• Closure axiom – Both Π
Ψ

A and Π
Ψ

B are subsets of

Ψ
 ∞

. Further, К is a power set of Ψ
 ∞

, i.e. К

contains all subsets of Ψ
 ∞

. Finally, because the

union of subsets is still a subset, К contains also

Π
Ψ

C. Thus, a capability A + B is from К for any

capabilities A and B.

• Identity axiom – A set К (as a power set) contains

the empty set, which means no capability. So, we

introduce the identity element 0 (written as zero

in bold) defined as follows:

0 = ∅

Thus, because the union of a set and the empty

set is a set itself, the equation A + 0 = 0 + A = A

is valid for any capability A.

• Associativity and commutativity axiom – As the

union operation is associative and commutative,

the equations (A + B) + C = A + (B + C) and

A + B = B + A are valid for any capabilities A, B

and C.

Thus, we have obtained a simple algebraic structure

but we need one more operator.

Therefore, we define the composite algebraic

structure (К, +, Λ, ·) as an extension of the structure

(К, +). The operation · is a function Λ × К → К that

satisfies the axiom of closure and right-associativity.

Accordingly, we define · as the concatenation of an

interpretation and a capability, i.e. we can write an

equation B = α·A as

Π
Ψ

B = { α
Φ(A)

ζ : ζ ∈ Π
Ψ

A } Π
Ψ

A ≠ ∅

 Φ(A) = { α : α
Φ
ξ ∈ Π

Ψ
A }

or

Π
Ψ

B = { α
∅

 } Π
Ψ

A = ∅

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 78

If we use some properties of regular and ω-regular

languages discussed in [1], it is again easy to show

that our operation · satisfies the closure axiom. First,

if ζ is from Ψ
 *
, then α

Φ(A)
ζ is from Ψ

 *
, because the

concatenation of two regular languages is another

regular language. Second, if ζ is from Ψ
 ω

, then α
Φ(A)

ζ

is from Ψ
 ω

, because the concatenation of a regular

and an ω-regular language is another ω-regular

language. In all cases, both α
∅

 and α
Φ(A)

ζ are from

Ψ
 ∞

, i.e. Π
Ψ

B is a subset of Ψ
 ∞

, and then Π
Ψ

B is from

К. Thus, a capability α·A is from К for any action α

and any capability A.

Now, for illustration, we present our algebraic

structure in a few interesting examples. First, let us

have a system given by the transition graph

that we express by the simple equation

A = α·A

whose solution (the capability) is the following set of

one permissible sequence of interpretations:

A = { α
α
α

α
α

α
… }

Subsequently, we check this solution by substituting

it into the right side of the equation, i.e.

α·A = { α
α
α

α
α

α
… }

and we obtain the same set as A. Thus, the solution is

correct. Indeed, if the infinite sequence α
α
α

α
α

α
… is

prefixed by one interpretation α
α
, it is still just the

infinite sequence α
α
α

α
α

α
… . Second, let us have a

little different system, i.e. the transition graph, the

related equation, and its significantly different

solution as follows:

A = α·A + α·0

A = { α
∅

, α
α
α
∅

, α
α
α

α
α
∅

, … }

Subsequently, we check the solution by substitution:

α·A = { α
α
α
∅

, α
α
α

α
α
∅

, … } α·0 = { α
∅

 }

α·A + α·0 = { α
∅

, α
α
α
∅

, α
α
α

α
α
∅

, … }

At last, let us have a more complex system, i.e. the

transition graph, the related system of equations, and

its solution (three capabilities) as follows:

A = α·A + α·B + β·C

B = 0

C = β·C

A = { α
∅

, α
αβ

α
∅

, …, β
β
β

β
…, α

αβ
β

β
β

β
…,

α
αβ

α
αβ

β
β
β

β
…, … }

B = ∅ C = { β
β
β

β
… }

Subsequently, we check the solution by substitution:

α·A = { α
αβ

α
∅

, α
αβ

α
αβ

α
∅

, …, α
αβ

β
β
β

β
…,

α
αβ

α
αβ

β
β
β

β
…, … }

α·B = { α
∅

 } β·C = { β
β
β

β
… }

α·A + α·B + β·C = { α
∅

, α
αβ

α
∅

, …, β
β
β

β
…,

α
αβ

β
β
β

β
…, α

αβ
α

αβ
β

β
β

β
…, … }

6. Conclusion

In this paper, we have pointed out the importance

of what is permissible (over what is possible) for a

modeled system. In addition, we showed that for any

transition system (used as model, see section 2) there

can be constructed an outer transition system, which

is always deterministic (in terms of interpretations)

and still holds the same capabilities. Moreover, we

showed that the capabilities identify the states of

outer transition system (that is minimized, i.e. has no

equal states). It simplifies many examinations of a

modeled system (it also allowed us to define our

algebraic structure) and it will be useful even in the

further theoretical work.

Further, we discussed the equivalence of systems

and examined properties of bisimulation equivalence

in terms of experimenting scenarios. After that, we

discovered that bisimulation is too strong for lighted-

button scenario (it simply distinguishes systems that

are equal in terms of this scenario). The comparing

of particular capabilities (unlike bisimulation) seems

to correspond to the lighted-button scenario. Hence,

we are going to proof it in the further work.

In our previous work [6], the simple calculus has

been introduced. Although this calculus overcome

A

α

C

β

B

β

α

A

α

0
α

A

α

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 79

some limitations of CCS calculus, there is an issue

(in the equivalence of states), which prevented us

from developing an algebraic structure. In this paper,

we improved the notion of capability and showed

that it is possible to introduce a proper algebraic

structure over capabilities (although it is only a

preview of the intended one). Our algebraic structure

has two main differences from CCS calculus. First, it

is simply an algebraic structure (e.g., it has just one

usual kind of equation, which can replace several

kinds from CCS calculus). Second, all constants and

expressions have representers (i.e. sets Π
Ψ
 in our

case). At least, both differences simplify theoretical

reasoning and allow us to utilize knowledge of

abstract algebra.

7. References

[1] Baier, C., and J.P. Katoen, Principles of Model

Checking, MIT Press, Cambridge, Massachusetts, 2008.

[2] B. Bloom, and A.R. Meyer, “Experimenting with

process equivalence”, Theoretical Computer Science,

Volume 101, Issue 2, Elsevier, Essex, 1992, pp. 223-237.

[3] J. Jürjens, E.B. Fernandez, R.B. France, B. Rumpe,

and C.L. Heitmeyer, “Critical Systems Development

Using Modeling Languages (CSDUML-04): Current

Developments and Future Challenges (Report on the Third

International Workshop)”, Lecture Notes in Computer

Science, Volume 3297, Springer, Berlin, 2005, pp. 76-84.

[4] Milner, R., Communication and Concurrency, Prentice

Hall, Harlow, England, 1989.

[5] R. Milner, J. Parrow, and D. Walker, “A Calculus of

Mobile Processes - I”, Information and Computation,

Volume 100, LFCS, University of Edinburgh, 1992, pp.

1-40.

[6] P. Pinkas, and J. Klečková, “Modeling of Capabilities

of a System in Algebraic Manner”, 1st International

Conference on Networked Digital Technologies (NDT

2009), Ostrava, Czech Republic, 2009, pp. 458-463.

[7] Roscoe, A.W., The Theory and Practice of

Concurrency, Prentice Hall, Upper Saddle River, New

Jersey, 1997. Revised 2005.

International Journal of Intelligent Computing Research (IJICR), Volume 1, Issue 3, September 2010

Copyright © 2010, Infonomics Society 80

