

Web Applications Security and Vulnerability Analysis

Financial Web Applications Security Audit – A Case Study

Tiago Vieira, Carlos Serrão

School of Technology and Architecture ISCTE-IUL/ISTAR-IUL

Lisbon, Portugal

Abstract

Information security can no longer be neglected

in any area. It is a concern to everyone and every

organization. This is particularly important in the

finance sector, not only because the financial

amounts involved but also clients and organization’s

private and sensitive information. As a way to test

security in infrastructures, networks, deployed web

applications and many other assets, organizations

have been performing penetration testing which

simulates an attacker’s behavior in a controlled

environment in order to identify its vulnerabilities.

This article focus on the analysis of the results of

security audits conducted on several financial web

applications from one institution with aid of

automatic tools in order to assess their web

applications security level. To help in security

matters, many organizations build security

frameworks for vulnerability assessment, security

assessment, threat modeling, penetration testing, risk

management and many more. As for penetration

testing, organizations such as OWASP provide

vulnerability and security information, a testing

methodology, risk analysis and penetration testing

tools.

1. Introduction

The finance sector is one with the most valuable

assets in information technology. Banking account

information, client’s sensitive data and transactions

are a few examples. They communicate with clients

though web platforms and need to insure security

and confidentiality. Financial entities are investing in

pen(etration) testing, a line of defense in information

technology to assert security in applications, systems

and networks [1].

A pen test simulates an attacker’s behavior

(commonly known as hacker) but in a controlled

environment to identify and mitigate possible

vulnerabilities [3]. A great number of organizations

provide frameworks and services to assess security

such as pen testing, risk assessment, threat modeling

and even teach ethical hacking [4][5][6]. An ethical

hacker is a security professional who uses hacking

tools and techniques in a legitimate way and with

consent from an organization to test and find

vulnerabilities in a system [7]. Pen test is used

mainly in the end of the software development

process. Whether other security software

development processes are adopted or not in this life

cycle, pen testing will ultimately check software

security [8].

This article presents the web applications testing

results, its conclusions and evaluates the tested

institution in terms of security maturity. The results

gathered reflect the audit of real systems developed

with security considerations, domain driven

development patterns in .Net technologies and with a

limited budget and limited development time with

inherent project management and SDLC constraints.

Based on this security audit, a superficial

understanding of other financial institutions can be

made and what vulnerabilities emerge in the finance

sector web applications that are based on the same

development technologies. On top of that, link the

vulnerabilities found with OWASP Top 10.

2. Penetration Testing

During the penetration testing, information

security specialists access tools and techniques

capable of compromising systems, networks or

applications in their confidentiality, integrity and

availability [3]. The first step before starting a pen

test is make sure the rules of engagement are set and

the organization formally authorizes the pen test and

its conditions [1]. Pen tests can adopt a black box,

grey box or white box approach. In a black box

approach, commonly the hacker’s environment, is

where the ethical hacker has no knowledge of the

system he is testing. In the white box approach the

systems are well known and there might even be

access to the source code [9]. Pen testing is more

than just finding vulnerabilities, is also the process of

verifying if they can be exploited and suggest

possible mitigations [10].

A penetration test is a complex and time

consuming endeavor, not only that, the time

windows to perform the tests is short. Before the test

begin, they have to be coordinated and accepted with

organizations management, the it administrators have

to be on alert for any situation and continuing

applications development can’t be halted. Typically,

web applications are also extensive and for that

matter, the tests should be organized and methodical

so that the best approach is reached.

There are many vulnerabilities in web

applications. OWASP [13] keeps track of the top 10

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 86

most critical ones (OWASP Top 10) ordered by risk

and probability [11]. This list is updated based on

data from several security specialized organizations

and individuals. Alongside OWASP, Web

Application Security Consortium (WASC) is another

institution devoted to the development of security

standards [12] that also ranks web application

security risks.

There are at a security professional disposal a set

of penetration testing methodologies and their use is

most important but it’s the security team responsible

for choosing the one who better suits their needs. A

pen testing methodology organizes a testing program

and helps organizations prepare an auditing, if

applicable [4][5][6].

In this case, the chosen approach was the

OWASP Testing Guide. This is the forth release of

this open source web testing framework created and

maintained by OWASP. OWASP is a nonprofit

organization that promotes web security with a vast

number of resources produced all connected proving

to be one of the best choices in vulnerability testing

and risk management. Some examples are the

OWASP Code Review Project, the Developers

Guide and web scanner OWASP Zed Proxy [4]. The

OWASP Testing Guide is a framework exclusive to

web security.

3. Web Scanners

A web scanner is a tool built to simplify the pen

tester task. They are able to perform automatic

attacks to web applications with little or none human

intervention [14]. A good web scanner provides

similar behavior to a web browser. The

functionalities that make a complete web scanner

according to WASC defined in the WASSEC are:

1. Protocol Support - Like a web browser, a web

scanner must be able to communicate though HTTP

and support its protocols, simple HTTP or HTTP

over SSL/TLS. There are many browsers and

versions, a web application provider cannot

guarantee that the client uses the most updated and

secure browsers, for that matter, a web scanner

performs better if it simulates different browsers and

versions.

2. Authentication - Is the way the user confirm he is

who he says and it has access to the request he makes

through the browser. Most web applications,

specially applications with different levels of

clearance, have different authentication methods who

will make the web scanner useless if it cannot

support, for example, HTTP Negotiate or Federated

authentication methods.

3. Session Management - During the scan, a “living”

session must be maintained with the application at all

time. Without it, the scanner cannot perform the

crawling or attacks to levels where “in-session” is

required.

4. Crawling - One of the main functions of a web

scanner is crawling, the ability to discover which

pages exist in the web application so that a full test

can be made [15]. Web scanners allow fast testing

and fuzzing, multiple attack modes and ease the pen

tester task. In a black or grey box pen testing where

the pen tester has no access to the application source

code or when he does not have knowledge of the

programming language web scanners are ideal [4].

Despite that, the amount of requests a web scanner

can perform automatically is substantially bigger

than manual testing. The test time reduction and

coverage are two of the most important advantages a

web scanner can provide [6].

5. Parsing - Parsing is the ability to read, interpret

and comprehend the contents present in web

applications. Contents such as Javascript, HTML and

Flash. Web applications can have multiple

technologies with many implementations. Parsing is

one way of identifying vulnerabilities that may exist

in the code.

6. Testing - These are the attack components of a

web scanner. The greater vulnerabilities type

coverage, the better. This is the module responsible

for attacking configuration and vulnerability

exploitation. The more attacks and procedures a web

scanner knows, the better results can be obtained but

a low false positives percentage is also a good trey in

a web scanner. If the web scanner classifies many

findings as vulnerabilities but in fact are false

positives, it will require the pen tester to invest much

time in validate the findings.

7. Command and control - A web scanner is also a

complex tool with many features, a good user

interface and significant usability is required for

smooth testing. Functionalities like “pause and

resume” scans, support multiple users and real time

analysis. The usage of the web scanner should be

simple so that all real work is in the pen test and not

in the learning of usage of the tools.

8. Reporting - A web scanner should allow to create

documents to view results outside the tool scope in

formats such as “.doc”, “.xml” or “.pdf”. The scan

crucial information should be gathered and classified

in a standard report format. If the scanner also

provides information about the vulnerability or links

to references, it simplifies the communication with it

departments for critical vulnerabilities.

Web scanner functions are based on the most

common vulnerabilities through techniques such as

fuzzing and input testing therefor, even one tool may

not be enough. A web scanner can be most effective

in certain circumstances and poor in others. Using

more than one tool, can provide better confidence in

the test results [6].

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 87

The most negative aspect of the automated web

scanners is the heavy generation of false positives.

These are situations incorrectly classified as

vulnerabilities by the web scanner, which require the

pen tester to spend much time confirming them [16].

Another crucial point of the web scanner are its

configuration options - for instance, if a web scanner

can’t perform authentication, the web scanner will

not be able to pass the login page and therefore

complete the web application test [16].

4. Test Environment

This case study includes results from 4

applications with several modules each based on .Net

technologies from versions 2.0 to 4.5. The

applications were developed by different teams and

have different components. Although the

applications are accessible outside the tested

institution, they are accessible though dedicated

secure connections. The performed tests were

accomplished in an internal network.

Figure 1. Web applications architecture

The web applications architecture is described as

showed in Figure 1. The web applications are

organized by layers and hosted in HTTP IIS Server.

The access to the data base is made through web

services hosted in the application layer. There is no

direct access from the web application to the

database. Each layer is defended by a firewall.

Database access is performed by stored procedures

without dynamic SQL and have restricted execution

permissions following the principle of “least

privilege”.

The web scanners used in these tests were

OWASP Zed Attack Proxy (ZAP) [17] and Burp

Professional [18]. ZAP is a free and no limitation

web scanner, Burp is a commercial application and

the tests were made in a free trial version with full

functionality. Both act as proxies and can perform

crawling, create a site tree view, identify and classify

vulnerabilities as found with explanations and

mitigation suggestions. Both tools can build simple

reports with all vulnerabilities and issues found in

several formats. An attempt to use also W3AF was

made, however W3AF is unable to perform

automatic POST fuzzing requests and therefore

limited its results.

5. Testing Methodology

This section describes the pen testing per si from

the moment the methodology was set and the

attacks/testing started. Following a methodology

helps a pen tester to prepare its audit, prevents from

targets being missed and helps organize the process

[8]. In this security audit, the OWASP Testing Guide

(version 4) methodology steps were followed but

with the help of web scanners.

Pen testing is a try and error endeavor. Every

application is different and there are many ways of

implementing any functionality. One can only try his

best to try to cover all areas in the tests and any the

amount of time dedicated to it is short. For the

financial web applications security audit, and

considering the methodology selected, the major ten

tasks to consider were the following:

1. Setting up web scanner configuration - The

scanner will register all the pen tester actions on the

application acting as a proxy and storing HTTP

requests. Setting the web scanner proxy

configuration, the technologies used such as

programming language, specify which pages are to

be considered on the web application, is of key

importance to track all the desired targets and avoid

unnecessary tests.

2. Navigate through the web application - This is

important for the pentester to get acquainted with the

application, its purpose, how it is build, and which

technologies it supports (such as JavaScript) while

the web scanner logs the requests conducted for

further analysis.

3. Perform the crawling - Use the scanner web

crawler functionality to explore every link it can find

in the targeting application. Web scanners are

capable of automatically building the entire web

application tree structure for analysis and possible

attack exploration and vulnerabilities identification.

4. Explore the web application crawled pages -

While crawling through the different web application

pages, every time it finds new pages, tries to explore

them as well.

5. Follow the chosen pen testing methodology steps -

Test every aspect of web security as possible keeping

notes, test results and report every critical issue

found. In this phase, the web scanner can be

extremely helpful as it identifies certain security

issues just by navigating through the web pages. The

web crawler acts as a test accelerator.

6. Perform automatic attacks - Most web scanners

have built-in attack capabilities. Using this

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 88

functionality, it is possible for the web scanner to test

the web application against a series of vulnerabilities

in a fast manner. Very useful for quick results and

for most common vulnerabilities findings.

7. Perform fuzzing on the web application pages -

The attack functionality is great for quick results and

a better look and feel of the application but, a manual

fuzzing can produce more precise attacks. For

instance, focusing SQL injection in the login page.

Manual fuzzing allows the pen tester to combine the

application inputs with the knowledge from the

application behavior’s analysis, allowing for targeted

or variations on automated attacks, in order to obtain

better results from the tests.

8. Explore the application logic parameters - Some

parameters have some logic meaning in the

application context, and may expect values that the

web scanner does not know how to automatically

interpret, by opposition to the human pentester.

Therefore, it is necessary to combine the scanner

fuzzing possibilities with the pen tester knowledge of

the web application being tested.

9. Exploitation - In this stage of the methodology it is

important to verify if the vulnerability that was

identified actually exits and if consists in any danger

to the web application security. The level of

exploitation should always be agreed with the

organization.

10. Mitigations and Reporting - Web scanners can

provide useful information to mitigate a vulnerability

which should be given to the organization along with

the pen tester complementary information. This

information is an output from many web scanners

such as ZAP and Burp.

As a recommended procedure, during the tests, it

is important to report immediately any critical or

strange situation found to the security responsible. In

order to have better and more complete results from

the pen testing audit, it is recommended to repeat the

entire process using one or more web scanners as a

failsafe.

The following section on this article presents and

discusses the results of the tests that were conducted

on the different financial web applications, while

using the automated web scanners and methodology

previously identified.

6. Results and Discussion

This section handles the results obtained during

tests. All tests were made in controlled environment

that replicate the finals user’s platform so that the

real system is not affected in performance or

availability.

The approach described earlier was followed in

order to achieve these results. The amount of logging

generated during automatic and manual testing was

more that 2Gb of information in requests and

responses captured by ZAP and Burp. This amount

of data expresses well the advantage of a web

scanner usage in terms of performing attacks,

identifying and annualizing a great amount of results.

In Figure 2 it is possible to observe the different

vulnerabilities that were discovered and confirmed in

all the tested applications. For security and

confidentiality reasons, no details about the system

or provable exploits to the identified application

vulnerabilities will be given.

Vulnerabilities listed in Figure 2 are grouped by

severity (high, medium, low and information) given

by the web scanner during test. The first

vulnerabilities listed are the critical ones at the

beginning of the chart followed by medium, low and

information. The high severity vulnerabilities are

also a part of OWASP top 10 and are confirmed

vulnerabilities which may compromise one of the

security vectors: integrity, confidentiality or

availability.

Figure 1. Vulnerabilities Found

As a result, during the pen test auditing were

identified and confirmed 26 different vulnerabilities,

across 4 applications with several modules each,

totaling 554 occurrences.

Figure 2. Vulnerabilities severity distribution

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 89

The severity distribution of these vulnerabilities

is showed in Figure 3. The number of high severity

vulnerabilities found was 8, 184 with medium

severity and 297 with low severity. This

classification so far was calculated by the web

scanners by may change if a risk analysis is

performed. The information severity vulnerabilities

were not taken accountable in this distribution and

from here on.

Figure 3. OWASP top 10 findings

The most critical vulnerabilities found within the

OWASP Top 10 are identified in Figure 4. These

vulnerabilities were classified has having high

severity and therefore should be addressed by the

web applications security teams as soon as found,

due to the exploitability level of the vulnerabilities

discovered.

A2 - Broken authentication and session

management: this vulnerability deals with the aspects

of handling and maintaining sessions in web

applications. A vulnerability of this type may allow

an attacker to take the user session and access to his

data and his profile in the application but local access

to the computer is required.

This type of vulnerability may simply rose from

an implementation error. For this reason, not only

functionalities should be tested but also security

oriented testing.

A3 - Cross site scripting (XSS): XSS allows an

attacker to send malicious code through the web

application, usually as client side code. A successful

script execution is a XSS vulnerability. The

malicious script can access any cookies, session

tokens, or other sensitive information retained by the

browser and used with that site.

There are several ways to combat this type of

vulnerability. First, all input to the server provided

from the client should be validated and sanitized.

Configurations to prevent this vulnerability can be

made at the application level or at the HTTP server.

Configuring the HTTP header requests can also

prevent the detection of XSS in pages. Current

browsers also come with XSS validations but, an

application provider cannot guarantee an updated

and trusted browser at the client side.

A4 - Insecure direct object reference: is a

reference to an object, file, directory or database

without access control. Data manipulation can be

achieved by exploiting this vulnerability.

This vulnerability can be detected with fuzzing.

Every access in the applications should guarantee

and verify the user accessing the information has

access privileges and clearance to the data he is

getting or sending.

A6 – Sensitive data exposure: this is a

confidentiality vulnerability where an attacker gains

access to private information like credit card number

or other information that can be used to other

malicious purpose.

A10 – Unvalidated redirects and forwards:

consists in allowing page redirect without validation

that can lead to phishing or malware sites allowing

social engineering.

Unvalidated redirects and forwards is another

type of vulnerability that in most cases, requires user

interaction. A user can be redirected to a malicious

site and through social engineering be misled to

disclosure information or credentials.

A8 – Cross Site Request Forgery (CSRF):

Although no vulnerabilities were confirmed, this can

be explored by XSS. Forged requests can be created

and send to users with opened sessions to

applications in order to perform an attack.

The mitigation for this vulnerability, at least in

the .Net environment is very simple. Using an auto

generated token associated in each GET and POST

request working as a temporary session for each

action can guaranteed no false requests are made.

Cross-site scripting (XSS) was the most recurrent

of the OWASP Top 10 vulnerabilities that was

found. This kind of vulnerability is ratter dangerous

not only because of what mentioned above but also

because it can allow to explore social engineering

against a user, a conscious user in security matters

can avoid many exploits. An updated and modern

browser is also an important security measure. In

many situations, one institution cannot control what

browser the client uses nor keep the web application

compliant with new browser versions. More recent

browsers already prevent some exploits such as XSS.

In the finance sector, these vulnerabilities may

compromise not only systems but also, at a higher

scale, compromise businesses. The access to

confidential data may leverage competitors in

decisions making or attackers to perform fraud and

identity theft. The damage in the finance sector ban

be monetary or reputational and are hard to calculate

[22].

Many kinds of attacks can emerge based on one

vulnerability like social engineering can start from an

invalidated redirect and forward.

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 90

Table 1. Vulnerabilities Found and False Positives

In Table 1 all vulnerabilities are listed as their

false positive occurrence. No precision rate can be

calculated because we do not know if there are any

other exploitable vulnerabilities but the false

positives found are only 2% of the results.

7. Risk Analysis

Risk analysis is the process of identifying risks to

organizations, in their work and in how they are seen

by the world. Part of risk analysis incorporates

threats and vulnerability analysis but in order to

quantify, a measure is required [23]. You cannot

control what you cannot measure [8]. A correct risk

analysis allows an organization to evaluate their

security maturity and prioritize controls and

mitigations to invest in [24].

A risk can be defined by a measure of the extent

to which an entity is threatened by a potential

circumstance or event, the adverse impacts that

would arise if the circumstance occurs and the

likelihood of the occurrence [23]. In short, impact

versus likelihood. The risk describes “what”

consequences the business will experience while the

vulnerability explains the “why”. It is safe to say,

risk analysis should be a part of the software

development life cycle [24].

Penetration testing is one of many possible lines

of defense in software security. Even in the event of

vulnerability finding and mitigation are applied, that

may only be false sensation of security. The adoption

of a methodology and security controls in all SDLC

and organization processes is recommended [8].

Here are some examples of the most recent updated

methodologies:

• Building Security in Maturity Model (BSIMM)

• OWASP Proactive Controls

• OWASP Application Security Verification

Standard (ASVS)

• OWASP Software Assurance Maturity Model

(SAMM)

• CVSS v3

BSIMM: A starting point in security can be

achieved by BSIMM, this framework is built by

analysis of the state of the art in 78 renamed

organizations in matter of security. BSIMM is

defined as a measure and not as a guide or checklist.

It simply reflects security practices in different

organizations [8]. BSIMM acts as a scorecard

evaluation by comparison. The goal of BSIMM as

any standard is to benefit organizations with a single

measure. BSIMM framework is organized in four

domains (governance, intelligence, SSDL

touchpoints, deployment), each with three different

groups of activities and a total of hundred and twenty

activities scattered by the twelve activities. In theory,

the more activities are included, the more secure will

be.

Figure 4. BSIMM deployment domain comparison

Figure 5 shows a comparison between and

organization in the deployment domain BSIMM

baseline. BSIMM also defines critical vulnerabilities,

as those who most organizations evaluated do not

expense and are present in successful programs.

They are:

Table 2. BSIMM Most Common Activities

Domain Activity

Governance
Identify gate locations and gather necessary

artifacts.

Governance Identify PII obligations.

Governance Provide awareness training.

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 91

Intelligence Create a data classification scheme and inventory.

Intelligence Build and publish security features.

Intelligence Create security standards.

SSDL Perform security feature review.

SSDL Use automated tools along with manual review.

SSDL Drive tests with security requirements and security

features.

Deployment Use external penetration testers to find problems.

Deployment Ensure host and network security basics are in

place.

Deployment Identify software bugs found in operations
monitoring and feed them back to development.

Penetration testing and code review, are two

examples of activities part of the deployment domain

and part of the considered successful programs. This

concludes that in new initiatives not only should the

twelve critical activities be considered but also the

other hundred, always according to each organization

needs and business.

OWASP Proactive Controls (2016): Similar to

the top 10 Vulnerabilities list, the proactive controls

are a set of controls to be considered in all software

development projects ordered according to its

importance. They fill the gap in secure development

school teaching and languages and frameworks lack

of critical security controls. It is made by

programmers for programmers. The document itself

is brief and very technical but, none the less very

important. The proactive controls are the following,

ordered by importance:

 Control

1 Verify for Security Early and Often

2 Parameterize Queries

3 Encode Data

4 Validate All Inputs

5 Implement Identity and Authentication

Controls

6 Implement Appropriate Access Controls

7 Protect Data

8 Implement Logging and Intrusion Detection

9 Leverage Security Frameworks and Libraries

10 Error and Exception Handling

These controls may seem covered in the OWASP

Testing Guide but, penetration testing occurs late in

the SDLC. It is best to have security concerns set

from the beginning of the SLDC.

OWASP Application Security Verification

Standard introduces a tests requirements checklist for

architects, programmers and testers should use to

define a secure application. As any other frameworks

or standards, it allows vendors to line their

necessities by the same measure. ASVS is divided in

three levels of security: opportunistic, standard and

advanced. Each of them has its own level of security

and associated cost. Only through a necessities

analysis and its assets valuation can an organization

identify which verifications and investment should

be implemented [21].

OWASP ASVS first level (Opportunistic) takes

in consideration the most frequent vulnerabilities

found such as OWASP Top 10 which should be

present in any development. The security needs will

define what other levels are to be implemented.

Standard level was developed for applications with

sensitive information. The third and most critical

level of security, applies to applications with money

transactions or high sensitive information.

OWASP Software Assurance Maturity Model

purpose is to help organizations to formulate a

strategy for software security [8]. It is built by two

layers, the first is Business Functions (BF) and the

second, Security Practices (SP). Business Functions

are the domains were to apply in the SDLC

(Governance, Build, Verification and Deployment),

the second layer are validations for each domain.

CVSS evaluation consists in capturing the

vulnerability main characteristics and compile a

score which reflects the risk severity. The calculated

score can be translated to a quantitative scale (low,

medium and high) [19]. CVSS is set by three groups,

the base group, and two optional, temporal and

environmental. The base group represents

vulnerabilities that don’t change in time, the

temporal group categorizes vulnerabilities that

change over time and the environmental group

considers variables specific to the user’s

environment.

CVSS is a multi-vector vulnerability analysis that

can define vulnerability in such way an institution

can understand and prioritize its resolution. Is

provides both a qualitative and quantitative risk

analysis [20]. CVSS v3 brings a new metric, score. It

allows to define what component is compromised by

exploiting the vulnerability. Another new important

metric is the definition of user interaction needed to

explore vulnerability. Attacks like social engineering

are linked to this metric.

The final contribution for this study is a

classification of the findings. The chosen framework

for risk analysis was Common Vulnerability Scoring

System (CVSS) v3. This is the latest version of this

industry standard released in the end of 2014.

Although it is recent, some studies have concluded

that this version can provide better risk analysis that

its previous version due to new metrics [20].

There can be no vulnerabilities information

disclosure but its conclusions can. The most severe

vulnerabilities found are the following:

 Cross site scripting (8.0 severity);

 Broken authentication and management (7.3

severity);

 Insecure direct object reference (8.5 severity);

 Cross site request forgery (8.8 severity);

 Invalidated redirect and forward (7.1 severity);

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 92

These vulnerabilities share most of these metrics

values showed in Table 3.

Table 3. CVSS v3 Evaluation example

Base Metrics

Attack Vector Network

Attack Complexity Low

Privileges Required None

User Interaction Required

Scope Changed

Confidentiality High

Integrity Low

Availability Not affected

Temporal Metrics

Exploit Maturity Code Functional

Remediation Level Workaround

Report Confidence Confirmed

Each vulnerability access is performed through

network with little complexity to perform. The

required privileges are none but they require user

interaction. The main security vector affected is

confidentiality. An analysis based on metrics rather

than on numeric values or a high, medium and low

scale allows a better understanding with a more

detailed analysis and prioritization of mitigations.

Broken authentication and session management and

insecure direct object reference do not share the user

interaction metric since they do not require user

interaction.

With limited resources such as time, in order to

choose between two risk for resolution, a score is not

enough to understand the consequences for

management. That is why the ability to describe and

articulate the risk exposure is of great importance. It

allows risk exploit understanding and what kind of

action and time requires [21].

Applying any of these methodologies or any

security framework is a time consuming endeavor

and for this reason, although recognized these

methodologies are strongly criticized [8] but is

certain that security should be applied in every

moment of the SDLC [4].

8. Conclusion

Security is critical in the finance sector, each

vulnerability can be exploited in many ways and

compromise monetary or financially the parties

involved. Pen testing and important and effective

security defense mechanism but the results of a

security audit are useless unless mitigations of

vulnerability are performed.

Analyzing the results in the web context, even

with security considerations in their development,

critical vulnerabilities were found. With time and

motivation, perhaps even more critical vulnerabilities

or with critical consequences could be found. Is most

cases, vulnerabilities can only be explored with user

interaction. This enhances the awareness that end

users should have in security. Both institutions and

works must work together to fill this gap. Even

aware users, in a demanding organizational world,

overwhelmed by large amounts of work and

deadlines need to have security well grasped no to

miss it even in stressful environments.

The results obtained by both scanners complete

each other. This supports the usage of more than one

tool. The false positives rate was very low and there

is no conclusion to exclude any tool used in this

matter. The low number of false positives can also be

explained by the web scanners configuration. Since

this test used a grey box environment and there was

knowledge from the web applications and support

structure, the web scanner can better direct the kind

of attacks to perform.

This work presents real application pen testing

results in the finance sector with .Net technologies

and assembles a pen testing methodology since the

starting point to mitigations and reporting. A

superficial comparison can be made in the finance

sector where web applications services based on .Net

technologies are developed. Although the .Net

Framework has defense mechanisms like injection

defense, other vulnerabilities may exist their exploit

can be dire to the parties involved.

9. References

[1] M. Walker, CEH Certified Ethical Hacking All-in-one

Exam Guide, 2nd ed., McGraw Hill.

[2] A. Razzaq, A. Hur, N. Haider, and F. Ahmad, Multi-

Layered Defense against Web Application Attacks, 2009.

[3] M. Buchler, J. Oudinet, A. Pretschner, Semi-automatic

security testing of web applications from a secure model.

[4] OWASP Testing Guide v4, https://www.owasp.org/

index.php/OWASP_Testing_Guide_v4_Table_of_Content

s.

[5] The CIS Critical Security Controlls for Effective Cyber

Defense v6.0.

[6] A. Austin, L. Williams, One Technique is not Enough:

A comparison of Vulnerability Discovery Techniques. pp

[7] EC Council, http://eccouncil.org/. (Access date: 3

March 2015).

[8] N. Teodoro, C. Serrão, Web application security, 2011.

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 93

[9] Y. H. Tung, S. S. Tseng, J. F. Shid, H. L. Shan, W-

VST: A testbed for evaluating web vulnerability scanner,

2014.

[10] Choose the best penetration testing method for your

company, http://www.techrepublic.com/article/choose-the-

best-penetration-testing-method-for-your-company/

5755555/. (Access date: 4 April 2015).

[11] OWASP Top 10,http://www.owasp.org/index.php/

Category:Owasp_Top_TenProject. (Access date: 12 May

2015).

[12] Web Application Security Consortium,

http//www.webappsec.org/. (Access date: 11 March 2015).

[13] OWASP Foundation, https://owasp.org/index.php/

About_OWASP#The_OWASP_Foundation. (Access date:

12 March 2015).

[14] A. Doupé, X. Cova, F. Akowuah, A case study on

web application security testing with tools and manual

testing, 2014.

[15] WASC Thread classification, http://projects.

webappsec.org/f/WASC-TC-v2_0.pdf, 2010. (Access date:

26 March 2015).

[16] How to choose a web vulnerability scanner,

https://www.acunetix.com/blog/articles/hot-to-choose-

web-vulnerability-scanner/, 2010. (Access date: 3 April

2015).

[17] OWASP zed atttack proxy web scanner,

https://www.owasp.org/index.php/OWASP_Zed_Attack_P

roxy_Project. (Access date: 27 April 2015).

[18] Burp web scanner, https://portswigger.net/burp/.

(Access date: 4 March 2015).

[19] K. Scarfone, P. Mell, An analysis of cvss version 2

vulnerability scoring, 2019.

[20] A. Younis, Y. Malaiya, Comparing and Evaluating

CVSS Base Metrics and Microsoft Rating System, 2015.

[21] E. Wheeler, Security risk management, building an

information security risk management program from the

gound up, Syngress, pp. 87-103, 2011.

[22] The Damage of a Security Breach: Financial

Institutions Face Monetary, Reputational Losses,

https://securityintelligence.com/the-damage-of-a-security-

breach-financial-institutions-face-monetary-reputational-

losses/, 2015.

[23] J. Broad, Risk management framework, a lab-based

approach to security information systems, Syngress, pp.

284, 2013.

[24] G. McGraw, S. Migues, & J. West, BSIMM6.

Retrieved from BSIMM: https://www.bsimm.com/wp-

content/uploads/2015/10/BSIMM6.pdf, 2015.

International Journal of Innovative Business Strategies (IJIBS), Volume 2, Issue 2, December 2016

Copyright © 2016, Infonomics Society 94

