

Method for Optimizing Energy Consumption using Context Awareness per

Application on Mobile Devices

José Carlos Valdivia Bedregal Eveling Gloria Castro Gutierrez Robert Arisaca

APOYO TOTAL CICA-UCSM MICRODATA S.R.L.

Abstract

Mobile devices are powered by batteries whose

capacities are limited by size, so efficient

management of energy becomes a very important

issue in such devices. Many solutions have been

proposed seeking to extend mobile device's battery

life, but there are only a few who takes the user as a

decisive and determining factor. Only the user

determines how to consume battery's energy.

Therefore the proposed application aims to solve this

issue by learning about user's context. By analyzing

this information, automated actions are performed in

order to optimize energy consumption.

1. Introduction

Today's society has become an interconnected

society; having timely information gives the user

several advantages. Mobile devices provide

opportunities when quick and updated information is

needed, a trend that is becoming a necessity in our

society.

Besides considering the many benefits they bring,

let’s consider the limitations. Mobile devices,

including cell phones, are powered by batteries that

are limited by size. This situation limits the ability of

fully enjoying the benefits of the device. Correct

management of energy stored in the battery should

be considered as an issue of utmost importance in

such devices.

Efficient energy management requires an

understanding of where and how energy is used [1].

To this end we present a detailed analysis of energy

consumption in a Samsung Galaxy Nexus

Smartphone.

Within the analysis end user must be consider an

important factor in addition to energy consumption

as end user is commonly overlooked. Ultimately, the

power consumption of a mobile device is defined by

the user activity.

Section II describes related work. Section III

describes “Power Tutor” tool. Section IV provides an

analysis of applications that consume more energy

and the components responsible of this consumption.

To perform this analysis, we used the PowerTutor

tool [2], which provided further information on the

components with higher energy consumption per-

application. Section VI shows the results obtained

from the analysis and also a classification of the

applications is presented in Section V. Finally, in

section VII, necessary measures are implemented to

achieve energy savings.

2. Related Work

Lide Zhang [2], describes PowerBooter, as a

modeling technique that uses automated voltage

sensors to monitor the power consumption of

different components in the device. It also describes

PowerTutor as a tool that analyzes the energy

management and uses the model generated by

PowerBooter to estimate real-time energy

consumption.

Aaron Carroll [3] describes energy consumption

of the device according to major hardware

components. Description for micro-benchmarks as

well as a number of realistic usage scenarios. These

results are validated by overall power measurements

from other two devices: the HTC Dream and Google

Nexus One.

Alex Shye [4], in his paper studies mobile

architectures in their natural environment,

developing a logger application for Android G1 and

seeking to record the information in a real user

activity environment. Also presents a regression

model to estimate the power consumed based on

collecting measurements easily accessible by the

logger. This model accurately estimates power

consumption and also provides detailed information

on the distribution of power between hardware

components.

Fangwei Ding, Feng Xia[5], developed an

intelligent system for monitoring energy

consumption called SEMO for Smartphones that use

Android operating system.

3. About Power Tutor

PowerTutor is an application for Android devices

that displays the amount of energy consumed by

major system components such as CPU, network

interface, display, GPS receiver and other

applications. The application allows software

developers to understand the impact of design

changes in the efficiency of energy use. Users of the

application can also get used to determine how their

actions affect battery life.

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 877

PowerTutor builds a model of energy

consumption by direct measurements. These

measurements are caught during a time of detailed

control of the devices that deliver energy. The model

provides an estimation of energy consumption with

an estimate error of 5% approximately from actual

values. In this investigation the error may increase as

unspecified constants have been used for the

Samsung Galaxy Nexus. Estimates are given through

a configurable display that provides history of energy

consumption. It also shows users textual output that

contains detailed results. Additionally, PowerTutor

can be used to monitor power consumption of any

application.

Table 1: Cell phone Tecnical Especifications

Device Samsung Galaxy Nexus

 GT-i9250

Operating

System

Android 4.2.1

Processor 1.20GHz TI OMAP 4460

(ARM Cortex A9 + PowerVR SGX540)

RAM 1 Gb

Display Oled 4.65"

Resolution 1280x720

Battery

Capacity

1750 mAh

Connections Wi-Fi

 3G (HSPA+ 21)

PowerTutor was developed by Ph.D. candidates

University of Michigan Mark Gordon, and Lide

Zhang Birjodh Tiwana under the direction of Robert

Dick and Zhuoqing Morley Mao at the University of

Michigan and Lei Yang from Google under the

direction of Professor Theodore Baker. He has

received previous support from Google and the

National Science Foundation under Grant CNS-

0720691, and was done in collaboration with the

University of Michigan and Northwestern University

in the framework of Empathic Systems Project.

4. First Approach

The first approach of this solution was meant to

be a static approach to realize how it’s possible to

reduce energy consumption. After that, a complete

solution was developed based on the knowledge

taken from this first approach.

4.1. Energy Consumption Analysis

Using PowerTutor, consumption tests were taken

on a Samsung Galaxy Nexus. The tests were

conducted considering a common use by the test user

for about7.5 hours.

Consumption measurements that have been taken

are not physical as done in [3]. Aaron Carroll has

more accurate measurements but they aren’t very

dynamic and condemn the cell to be connected to

external devices.

Top consumer applications with higher energy

consumption in sum of all of the cellphone’s

components and the overall results are presented in

Fig. 1.

Fig. 1presents that the application with higher

energy consumption is: WhatsApp, an internet based

messaging application. Subsequently there are

system services and processes: Google Automatic

synchronization, through which the cell phone

synchronizes contacts, calendar with Google's

servers in the cloud and the Android OS.

Continuing, there are two communication

applications: GoogleTalk and Skype. Then it shows

an e-mail client: Hotmail. Finally other two

processes are observed system, the dictionary and the

home screen.

Figure 1: Overall Results

A deeper analysis by components for each

application is shown in Fig. 2. Having WhatsApp

application as a reference, it shows that there is an

increased consumption in the OLED screen, which

has a 75% of the total battery drained by the by the

application. Next consumption is the internet

communication, whether using Wi-Fi or 3G, it

represents 20% of total consumption and finally the

remaining 5% is CPU consumption.

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 878

Figure 2: Per component results

In Google Talk, there are similar consumption

patterns; screen consumption represents 90%,

communication consumption represents 6% and only

2% is CPU consumption.

To confirm this behavior, there is Skype, which

remained longer at background and doesn’t have the

same screen consumption; only 19%, but internet

communications recorded an 80%.

4.2. Classifying applications

In the means of classifying applications it has

been examined [3] and based on their classification it

was decided to create four classifications that will be

used to implement future actions:

Table 1: Application classifications Especifications

System Applications

User Applications

CPU Applications

Comunication Applications

4.2.1. System Applications

They are Android System’s Applications, to

which access or modification isn’t convenient as this

can result in a cell phone restart.

4.2.2. User Applications

User applications are those which are going to be

manipulated seeking for a more efficient energy

management. User applications can be:

 CPU applications: Applications that usually
make greater use of the components; display and
CPU. Especially when most processes are in
foreground. For such applications energy saving
will preferably be in display’s energy
consumption, reducing brightness and the time it
takes to shut down. If they are applications
running in background it could be convenient to
close them.

 Comunication Applications: Applications that
take greater use of communication activities and
display. Display usage will occur when the
application is in foreground, either to check or
send information that the application needs.In this
type of applications power consumption can be
reduced in two ways: one is focused on the
display, reducing brightness and time of
suspension. And the other way is to focus on
communication activities. Both approaches are
effective, but the results depend on the type of
users and the number of times and period of time
spent using these applications during their daily
routine.

4.3. First Results Analysis

Applications employed by the user during the

time the test was performed got reviewed in order to

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 879

Table 3: Top 15 consumming Applicactions

Application Total Assigned Type Oled %Oled CPU %CPU Wi-Fi+3G %Wi-Fi+3G

WhatsApp 2000.0 Communication 1500 75.00% 92.3 4.62% 411.4 20.57%

Sync. Google 1500.0 Communication 0 0.00% 36.8 2.45% 1400.0 93.33%

Android OS 1000.0 CPU 533.6 53.36% 388.3 38.83% 104.4 10.44%

Google Talk 976.0 CPU 957.2 98.07% 18.8 1.93% 0.00%

Skype 812.1 Communication 154.5 19.02% 14.2 1.75% 643.4 79.23%

Hotmail 569.6 Communication 110.7 19.43% 17.0 2.98% 442.0 77.60%

Dictionary 485.4 CPU 473.8 97.61% 11.6 2.39% 0.0 0.00%

Home Screen 445.1 CPU 423.6 95.17% 21.5 4.83% 0.0 0.00%

Power Tutor 424.8 CPU 365.7 86.09% 119.3 28.08% 0.0 0.00%

Mail Client 379.1 Communication 16.5 4.35% 7.4 1.95% 355.2 93.70%

BeautifullWidgets 374.2 Communication 36.9 9.86% 65.5 17.50% 271.8 72.63%

Top Eleven 310.7 Communication 171.1 55.07% 35.6 11.46% 104.0 33.47%

Maps 279.3 Communication 15.9 5.69% 47.5 17.01% 218.4 78.20%

Google Now 272.7 Communication 0 0.00% 20.6 7.55% 251.4 92.19%

develop a table that classifies applications depending

on their component’s energy consumption.

It is possible to observe that most applications

that our test user employed were "Communication"

type. As it was pointed before, test user mostly uses

the cell phone as communication tool.

However, it should be noted that the user didn’t

employ the cell phone as a music player or to play

any of the video games previously installed. Had it

done so, these new applications would have been

classified as CPU and they should been placed at the

top of the table.

It is also important to note that depending on how

much each application uses the display can show if

the application is kept at foreground or restricted to

background. For example, WhatsApp application,

according to the results, was the most employed by

the test user and remained at foreground for the

longest time.

Figure 3: Consumption by component type

Figure 4: Consumption by Communication Applications

Figure 5: Consumption by CPU Applications

6497.7
3331.3

Consumption by component
type

comunication

CPU

0

500

1000

1500

2000

2500
W

h
at

sA
p

p

Sy
n

c.
 G

o
o

gl
e

Sk
yp

e

H
o

tm
ai

l

M
ai

l C
lie

n
t

B
ea

u
ti

fu
ll…

To
p

 E
le

ve
n

M
ap

s

G
o

o
gl

e
N

o
w

C
o

n
su

m
p

ti
o

n
 (

jo
u

le
s)

Aplications

Consumption Communication
Applications

0

200

400

600

800

1000

1200

C
o

n
su

m
o

 (
jo

u
le

s)

Applications

Comsuption CPU Applications

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 880

Figure 6: Module’s Diagram

4.4. Actions Taken

To reduce energy consumption per application the

following actions are proposed:

 Turn off all unnecessary hardware: [6] Turn off:

GPS, Wi-Fi, Bluetooth, and use Edge connection

instead of using 3G or LTE connections.

 Optimize the power consumption of display: [7]

Turn it off if possible, otherwise use Automatic

Brightness.

 Close CPU consumption applications:By

eliminating background processes a huge energy

saving can be achieved.

 Increase the time interval between reloading

information in Communication applications:Set

an interval of time where the communication

applications will be frozen until information gets

refreshed. In this work we define freeze as limiting

all possible internet communication. Also

information should be refreshed or updated within a

determined interval of time.

4.5. Initial Tests

These actions were implemented statically within

a project application.

Subsequently the Samsung Galaxy Nexus smart

phone was left maintaining a communication with a

medical device to receive medical information 1 time

every second.

After 8 hours of this process, comparing results

with the initial measurements, without any energy

saving implementation, this static solution shows a

10% of energy saved.

5. Complete Solution

The final solution implements a learning module

for context awareness purposes. Dynamic profiles

are created per application for not compromising

user experience. Fig. 6 shows the organization of the

proposed modules.

5.1. Context Awareness Module

The proposed solution needs a large information

base that will convert in information so it can work

properly. The first step for saving energy is to take

awareness of the context that surrounds the user and

the Smartphone.

The Context Awareness Modules is primarily

based on PowerTutor. PowerTutor uses variables to

estimate energy consumption, but these variables are

only available for PowerTutor’s authors oriented

Smartphones which are limited by number and most

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 881

of them are old or discontinued. This problem makes

PowerTutor’s measurements not as exact as

expected. Most of them are just used for referential

which doesn’t limit our Knowledge data base for one

reason: Any kind of smartphone despite of their

brand or manufacturer is going to have a similar way

to consume energy, for example, on any smartphone

the display is going to represent the most consuming

component on an smartphone, followed by the

Network Interfaces (3G or Wi-Fi).

Application’s consumption is estimated based on

PowerTutor reports and then classified by each one

of the installed applications so then it can be

subdivided by component consumption. Finally, all

this data is processed and send to the Data Base

module for storage.

5.2. Data Base Module

Data Base Module gets all the data from the

Context Awareness Module so it can introduce it to

the application’s data base. Fig. 7 shows the structure

of the data base.

After all data is inserted from the Context

Awareness module to the data base the Data base

Module gets one last call from the Context

Awareness Module instructing it to start the Learning

Module. The Learning Module process all the data

and inserts the results in the data base for storage.

Figure 7: Data Base Diagram

5.2. Learning Module

After getting and storing all the data, there’s a call

to the Learning Module so it can obtain knowledge

from this large amount of data.

The chosen method for getting knowledge using

the Learning Module is classifying the applications

in consumption divisions. Each application is

assigned a level from 1 to 10 and a blocking time as

shown in Table 4.

During this blocking time applications will get

blocked from using networks interfaces for accessing

to the web or applications will be closed.

This method was chosen because it guarantees the

less energy consumption for the Execution Method.

Table 4: Blocking Time per Level

Nivel Tiempo de Bloqueo (s)

1 30

2 60

3 90

4 120

5 150

6 180

7 210

8 240

9 270

10 300

To assign a level to each application, the solution

focuses in display’s energy consumption. First it

sums the total display’s consumption then compares

it with the display’s energy consumption for each

application and then assigned a level to each

application depending on the display’s energy

consumption.

Larger energy consumption represents an

application that spends more time on foreground so

it’s considered as a more important application for

the user. Then, a level is assigned to each application

where 1 represents a more important application for

the user and 10 represents a less important

application for the user. The lower the level of the

application the more time it gets network blocked or

closed by the execution module.

5.3. Execution Module

Execution module it’s the most important module

for the proposed solution. It can be considered as an

orchestra conductor. After obtaining all data and

knowledge from the data base the execution module

starts to manage both subordinate modules: Network

Blocking Module and Application killing module.

These two modules are just simple modules that

follow instructions from the Execution Module.

The execution model lifecycle starts with the

user’s petition and starts iterating every 30 seconds.

On each one of the iterations, the execution module

decides whether to block the network or close an

application as seen in Table 5.

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 882

Table 5: Levels blocked per iteration

When the user decides to stop the execution

module, its final action consists on reverting to the

default configuration all modifications so the user

can continue using his smartphone normally.

Another important task that this module has is to

distinguished user applications from Android System

Applications.

5.4. Application Killer module

The application Killer module is one of the simple

modules that work under the directions of the

execution module.

The Application Killer module’s main purpose is

to close and start applications on each iteration from

the execution module.

When an application is installed on a smartphone;

it’s also assigned with an UID. The UID is a unique

identifier that works as parameter for Application

Killer module that executes these actions using

Linux Commands like kill.

5.5. Network blocking module

The second simple module is the Network

blocking module for blocking the applications to

access to internet through any of the Network

interfaces like 3G or Wi-Fi. It’s based on IPTables, a

linux tool that works as a firewall implemented in

all Linux Kernels.

IPTables are a set of rules saved on a file that is

reviewed by the system every time one application

intents to access the web. That way, IPTable filters

any Web Access that doesn’t satisfy the IPTable’s

rules. Any blocked application thinks that there is no

internet connection active so they don’t consume

energy during that time

Network Blocking Modules is based on

DroidWall, an android Tool that provides an API for

the creation and management of set of rules for

filtering Network Packages.

6. Final Results

The final solution was installed in 3 test Android

devices. First, some initial tests were taken for

comparing purposes before and after the installation

of the solution.

Then they were leaved for about one day learning

about the user’s context.

 Then, there was a final energy consumption test

which results are shown in Table 6.

The average percentage of energy saved between

the 3 devices is 7% over the user’s smartphone

battery; but the most highlighting is that user’s

experience on the use of the smartphone is barely

noticeable.

7. Conclusions

 It’s possible to identify, between the installed

applications, which represents the most energy

consumption. After identifying the can be evaluated

and energy consumption optimized.

 It’s possible to store, in an unnoticeable way, user’s

context. Knowing that the user is one critic and

important factor in energy consumption.

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 883

Tabla 6: Final Results

 Cellular Before installing the Solution After installing the Solution

 Hours Joules Battery % Hours Joules Battery %

1 Samsung Galaxy Nexus 8 4784 25% 8 4401 17%

2 Asus Nexus 7 8 4912 10% 8 4519 6%

3 LG L3 E400 8 2482 29% 8 2283 20%

 It’s possible to analyze and understand user’s context

while he is using this smartphone, which is shown in

the correct learning methods.

 Two actions were defined and implemented for

saving precious energy consumption on an

smartphone.

 Each application can be defined by a dynamic profile

depending on its own energy consumption. This

profile depends in which ACTION to use and how

much time the application is going to be blocked or

closed.

8. Future Works

 Optimizing energy consumption during learning

time based on:

 In learning time the solution increments

consumption for registering all data;

 In execution time there are no high energy

consumption problems;

 This high energy consumption problem is

because PowerTutor is designed for getting

exact data, even though we just need

referential data.

 Optimizing CPU applications discrimination,

based on:

 It was noticed that some applications were

closed even though the applications was

very important for the user;

 For example, a Music player was closed by

the solution even though it shouldn’t be

closed;

 Finally the solution can be optimized by

filtering CPU applications in a more

efficient way.

9. References

[1] Yi-Fan Chung, Chun-Yu Lin, Chung-Ta King “ANEPROF:
Energy profiling for Android Java virtual machine and
applications” in 2011 IEEE 17th International Conference on
Parallel and Distributed systems, p. 372-379.

[2] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang
Wang, Robert P. Dick, Z. Morley Mao, Lei Yang “Accurate
online power estimation and automatic battery behavior
based power model generation for smartphones”
Proceedings of the eighth IEEE/ACM/IFIP international

conference on Hardware/software codesign and system
synthesis. Pages 105-114

[3] Aaron Carroll, Gernot Heiser “An analysis of power
consumption in a smartphone” Proceeding
USENIXATC'10 Proceedings of the 2010 USENIX
conference on USENIX annual technical conference Pages
21-24

[4] Alex Shye, Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile
Architectures . Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture Pages 168-
178 ACM New York, NY, USA ©2009

[5] Fangwei Ding, Feng Xia, Wei Zhang, Xuhai Zhao,
Chengchuan Ma “Monitoring energy consumption of
smartphones” in 2011 IEEE International conferences on
internet of things, and cyber, physical and social computing,
p. 610-613.

[6] Soumya Kanti Datta, Christian Bonnet, Navid Nikaein
“Android Power Management: Current and Future Trends”in
the first IEEE workshop on enabling technologies for
smartphone and internet of things.

[7] Stephen P. Tarzia, Peter A. Dinda, Robert P. Dick, Gokhan
Memik“Display Power Management Policies in Practice”

[8] Josh Feiser, Vijay V. Raghavan, Teuta Cata “A risk-based
classification of mobile applications in healthcare” in
International journal of healthcare delivery reform
initiatives, p. 28-31.

International Journal for Infonomics (IJI), Volume 7, Issues 1/2, March/June 2014

Copyright © 2014, Infonomics Society 884

