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Abstract 
 

Knowledge graphs provide information on 

entities such as objects, events and historical figures, 

and how they are connected to one another. In this 

paper we discuss the application of visualization 

techniques to knowledge graphs and highlight the 

insights that are made possible. We also propose a 

browser-based method for exploring knowledge 

graphs based on self-organizing maps. We developed 

a browser-based framework called Desic to apply 

this technique to the Knowledge Web project, and to 

evaluate its performance.  

 

1. Introduction 
 

Knowledge graphs represent entities such as 

objects, events and historical figures, and how they 

are connected to one another. 

Knowledge graphs have significant overlap with 

other aspects of network theory, but differ in terms 

of emphasis. Knowledge graphs are related to 

semantic networks, except that entities have physical 

meaning, and may contain social networks, although 

interactions with non-social entities are considered as 

well. The generality of knowledge graphs poses 

significant challenges, but offers significant rewards. 

The generality of knowledge graphs allows for 

several important uses. First, knowledge graphs can 

be used to disambiguate user input, because “Kevin 

Bacon” can refer to a famous actor, a music 

producer, a senator from Ohio, and an Olympic 

athlete.  

Second, knowledge graphs are a simple and 

effective way to define entities in a structured and 

systematic manner, by interpreting connections as 

properties of the entity. For example, actor Kevin 

Bacon can be defined by his connections to his 

hometown, family, college, filmography, and so on. 

Third, knowledge graphs provide broader context 

for how knowledge and innovations develop and 

create social change. 

Fourth, knowledge graphs allow users to 

understand the creation of ideas. Often, the pieces for 

technological breakthroughs existed long before 

someone put them together. Knowledge graphs also 

demonstrate the social impact of ideas, revealing 

changes in society and thought. 

By randomly exploring knowledge graphs, 

students and other users may find serendipitous 

trends or combine ideas in a new way. 

 

2. Application of Self-Organizing Maps 
 

Given the connectionist nature of our work, it is 

only appropriate that the visualization algorithm for 

the knowledge graph should be computed by 

interpreting it as a neural network. Topological 

mappings are common in the brain, and the brain 

likely computes information based on neural 

connectivity. If so, our algorithm is a model of how 

the brain actually works, and should therefore be 

optimal for conveying information to humans. 

Our method is based on the Self-Organizing Map 

(SOM), introduced by Kohonen [1] which remains a 

popular tool for visualizing high-dimensional data. 

SOM is applied in applications ranging over biology 

[2], neurology [3], data mining [3], and robotics [4]. 

A conventional SOM is an unsupervised neural 

network that performs a topographic mapping from 

input data in ℝn
 to a two- or three-dimensional 

rectangular or hexagonal grid.  

During the training phase, all neurons compete 

with each other for the input signals. The winner and 

its neighbors update their connection weights. 

The algorithm takes as parameters a 

neighborhood function h, which decreases the 

response of neurons based on their distance from the 

winner; an adaptation schedule α, which decreases 

neuron adaptation over time; and the number of input 

samples. Common choices are 

          
     

                   
 

 
      

Algorithm 1: SOM 

 

input: Neural network N 

output: layout of G in R
2 

 

for each input sample x: 

     find the nearest neuron n with           

     for all neurons ni with             : 

                                            

end 

 

2.1. Optimized SOM for Graph Layout  
 

To adapt SOM for graph drawing, we input the 

knowledge graph as the neural network. We wish for 

the knowledge graph to approximate ℝ2
, so we 

initialize each node with a random vector and 

provide random vectors as training samples. Similar 

approaches may be found in [5-7]; however, our 

algorithm works with general graphs, including 

disconnected graphs, generalizes to different edge 
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types (different relationships between nodes) and 

other auxiliary data, has a highly-tuned time 

performance. 

We specifically designed the algorithm to have an 

effectively linear performance on scale-free graphs. 

The inner function (find) is implemented by a 

breadth-first search in O(V) time, and creates a 

hashmap that allows for O(1) lookup in the for loop. 

The number of iterations is therefore parameterized 

by the diameter of the graph; specifically, the 

harmonic sum 

 

  
    

 
 

          

   

                

 

Thus, the theoretic time complexity of our 

algorithm is         . In addition, many networks 

based on real datasets are thought to scale-free [8-

10], which are highly connected with a diameter that 

grows at a rate below log V [11-12]. Consequently, 

the time complexity may also be expressed as 

           . In practice, D is so small as to be 

thought constant, and performance is effectively 

linear with respect to the number of vertices. 

 

Algorithm 2: SOM for graph layout 
 

input: Graph G 

output: layout of G in ℝ2
 

 

r ≔ diameter(G) 

iterations := [1000/r] 
 

while r > 0 : 

     generate a random vector    

     find node n with               

     for all nodes ni with             : 

                                            

 

     if( iterations = 0 ) 

          decrement r 

          iterations = [1000/r] 
     else 
          decrement iterations 
 

 

 

 
 

Figure 1: SOM layout of a random 25-node graph 

 

 

2.2. SOM for Spherical Graph Layout 
 

Unfortunately, SOM in a Euclidean geometry 

suffers from the border effect: nodes located toward 

the boundary of the space have fewer neighbors than 

those located near the center, and thus the weight 

vectors of the nodes tend to collapse toward the 

center of the input space [13]. Our two-dimensional 

self-organizing maps often utilized less than half of 

the available space (Figure 1). This problem was 

exacerbated by the fact that the algorithm does not 

enforce any vertex separation, causing vertices to be 

clustered in the center. 

To avoid these problems, we first tested the 

conscience mechanism of [14], which adds a 

frequency bias    to the winner selection process 

based on winning frequency. 

 

     
 

 
     

 

Fn is the winning frequency of node n, initialized 

for all nodes as 1/N, and   amplifies the frequency 

difference, initialised as a large factor. The overall 

effect is to prevent a few nodes from representing too 

much of the input data of random vectors, creating a 

more even distribution and thus reducing the number 

of iterations required. We found that the frequency 

bias further improved performance, but did not 

satisfactorily solve the border effect, because too 

high of a bias created an essentially uniform layout, 

which adversely affected the quality of our 

visualization. 
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We explored other workarounds by Kohonen [15] 

and others [16], but ultimately concluded that the 

fundamental problem is that Euclidean planar or 

three-dimensional graph layout is unsuitable for 

knowledge graphs: finite Euclidean geometry gives 

an excessive and mistaken emphasis on central nodes 

versus outlying nodes. Instead, we chose to map the 

knowledge graph onto the surface of a sphere. For 

display on a screen, we provide a perspective 

projection, which the user can rotate to view all the 

nodes. Spherical layout provides further benefits as 

well: 

 

 Higher information density 

 A natural fisheye view, allowing users to examine 

their selection in detail while maintaining global 

context 

 Greater interactivity and engagement 

 Compatibility with a future geographic mode of 

exploration 

 Provides the sense that knowledge is never-

ending 

 

Implementing this change in topology required a 

few changes. First, the vectors must be three-

dimensional. Second, we updated our procedure for 

generating random vectors, because generating 

random vectors based on uniform distributions 

                 results in a non-uniform 

distribution. Third, we changed the distance metric 

from the Euclidean norm to the geodesic arc, and 

normalized the updated vectors to the sphere. 

Finally, we implemented a matrix rotation and 

projection for the user interface. 

 

Algorithm 3: Desic algorithm for graph layout 
 

input: Graph G 

output: layout of G on the sphere 

 

r ≔ diameter(G) 

iterations := [1000/r] 
λ ≔ 10000 

 

while r > 0 : 

     generate a random vector    

     find node n with                   

     for all nodes ni with             : 

                                                        
 

     if( iterations = 0 ) 

          decrement r 

          iterations = [1000/r] 
     else  decrement iterations 

 

 

 

 

3. Desic  
 

We developed a framework named Desic (for the 

fact that edges are represented as geodesic arcs on 

the sphere) to explore graphs generated from real 

data. 

We decided to build a web application to reach a 

larger audience of students and to reduce the friction 

of sharing ideas and journeys. In the past we have 

prototyped ideas using the Java and Flash platforms, 

but we ultimately chose to use solely Javascript and 

HTML5 canvas because of (1) increased 

accessibility from not relying on plugins, (2) more 

accessible code, and (3) the open specifications align 

with the ideal of open access to knowledge. 

We found that the majority of browsers currently 

in use can draw up 10,000 nodes with an acceptable 

frame rate (at least 24 FPS) with efficient processing. 

Since individual nodes reach the limits of screen 

resolution beyond that, larger graphs will require a 

modification to the algorithm to support clustering. 

Ultimately, Desic was able to embed large 

knowledge graphs of thousands of nodes in real time. 

Source code is available from the author. 

 

4. Knowledge Web  
 

The Knowledge Web seeks to make learning 

exciting and accessible and counters the tendency in 

modern education toward specialized learning and 

thinking. The project generously provided data 

processed from James Burke’s Connections series, 

which explores the idiosyncratic relationships 

between technology and social change. 

The Connections dataset validates many of the 

assumptions we made for Algorithm 3. The general 

structure was scale-free with an exponential degree 

distribution; the average vertex degree was 7 while 

Isaac Newton had 98 adjacencies. As we had 

previously assumed, such graphs would have a very 

small diameter. The diameter of the Connections 

dataset was 10, which is vastly below log (1718). 
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Figure 2. Desic visualization of a 5-component, 25-

node graph. Note that Desic uses rotation to provide 

a better sense of depth than can be seen here 

 

5. Future Work  
 

More experimental results are needed to test these 

results on different real-world knowledge graphs. We 

plan to generate visualizations on successively larger 

graphs. Our vision is to eventually allow users to see 

the entire article structure of knowledge graphs such 

as Wikipedia (4 million nodes) and Freebase (22 

million nodes). 

User experience may also be improved by taking 

advantage of semantic information, such as 

references to geographic locations, past dates, and 

different types of relationships between nodes. 

Alternative user interfaces including maps and 

timelines marked with nodes would complement our 

visualization very well and could even serve as 

filters to view nodes only in the relevant times or 

locations. 

 

6. Conclusion 

 
This paper discusses the potential of knowledge 

graphs. We have also developed an algorithm to 

visualize knowledge graphs, which has been 

implemented in the Desic framework. Through 

Desic, an effectively linear graph drawing algorithm, 

we have shown that exploration of entire graphs is 

possible. 

 

 

 

 
 

Figure 3. Desic visualization of the full 1718-node 

Connections graph, rendered in-browser (edges not 

shown) 
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