

Figure 3. Breaking out of a cycle

breaking out of a cycle should be as small as possible.

Also, the decision when to use a different iteration

should be simple.

Note that in general, the possible gain in quality is

large. If both transition functions were possible and

equally likely in each state, then each node in the

graph would have two outgoing edges. For randomly

chosen edges, our experiments indicate that the graph

then is weakly connected, with a strongly connected

component that comprises about 84% of the nodes,

and a rich inner structure. Let be the average

distance between two break-out states. In this case,

should be chosen small enough that at least one

break-out state is on each of the larger cycles.

4.1 Analysis for Logistic Map

Figure 4 shows the analysis results for a break-out

to a random node in the state graph for the Logistic

Map transition function. As a special case of

breaking-out every steps on average, we are using a

counter and break out exactly after steps, starting

with . Experiments have been performed with

different values of k, ranging from 2 to 1024. The x

axis shows the values of k, while on the y axis the

maximum cycle length that was found for a run with

100 different start values is displayed. The random

transition function that was used for the selection of

the target node was the AES symmetric stream

cipher, used in Cypher Feedback (CFB) mode,

meaning that the output of the encryption algorithm

was used as input for the next iteration. With AES

being a highly regarded cryptographic algorithm, this

creates a pseudo random generator of exceptional

quality, but even more importantly without any

expected statistic dependence on the Logistic Map

function. The result shows a very mixed behavior: for

some values of k, the maximum cycle length is

increased compared to the values in Table 2. But e.g.

for k=64, the maximum cycle length is even lower

than without the break-out mechanism. The

conclusion that can be drawn is, that a blind break-out

Figure 4. Maximum cycle length for Logistic Map

using random break-out target nodes

to a random target node will not generally improve

the state space structure, but might randomly improve

or degrade it, dependent on the chosen target node.

 5. Parameter Modification

A purely random approach to the break-out

method apparently does not necessarily have a

positive impact, as was shown in the previous section.

Furthermore, implementing a statistically

independent pseudo random generator in addition to

the original transition function does not appear very

efficient from a computational point of view, leading

to a significantly increased required chip area for

hardware implementations. So instead of

approximating a random function with expected

values as given by [7], we propose to use the chaotic

function with a different parametrization instead. The

properties of chaotic functions should ensure that the

changed parametrization leads to a behavior that is

statistically independent enough from the original

function.

5.1 Analysis for Logistic Map

Looking at the Logistic Map function

, there is not much potential

for parametrization: the only candidate to modify is

parameter .

The analyzed approach was to switch between a

value of 3.99 and 3.98 every steps with ranging

from 2 to 1024. Table 3 shows the result of the state

space analysis. It can be seen that breaking out of the

cycles increases the maximum cycle length

significantly by a minimum factor of 2 for up

to a factor of 227 for . It can also clearly be

seen that the maximum cycle length increases with .

Figure 5 shows this relationship. The graph is not

completely consistent with -values of 32 and 256

showing a decline compared to the previous values.

International Journal of Chaotic Computing (IJCC), Volume 4, Issue 1, June 2016

Copyright © 2016, Infonomics Society 66

This can most probably be explained by the very low

number of 10 start values for measuring the cycle

lengths.

Table 3. Analysis results of Logistic Map
Switching to alternative A-parameter every k

steps

k Cycle

Lengths

Maximum Tree

Heights

% of Start

Values

2 14258373 169347594 100

4 81839355 219447222 100

8 92330073

158592654

23977917

5583933

116649348

153814118

39516082

29542408

50

20

20

10

16 166687958

18456033

347193629

66490210

90

10

32 16463304

106561026

509498228

184708805

50

50

64 285351755

27448135

186333745

247720291

163920805

138538519

70

20

10

128 365089092

490073193

459489459

568127512

90

10

256 122507017

61896137

1011052679

766210246

50

50

512 918541890

505315773

913649910

506390293

70

30

1024 1517222425

997359850

2056217674

1168909136

60

40

Figure 5. Maximum cycle length over k for

Logistic Map

5.2 Analysis for Trigonometric Function

Similar investigations have been performed for the

Trigonometric function. Again, the function

 has not many options to be

parametrized. The most obvious one is a modification

of the parameter. The analyzed modification is a

switch between the two -values 2 and 3 after

iterations with ranging from 2 to 1024. Table 4

shows the analysis results. Again, the maximum cycle

length was increased for all -values except for

 by factors between 7.4 and 75. Figure 5 shows

the relationship between k and the maximum cycle

length and shows a similar dependency as for the

Logistic Map function.

Table 4. Analysis results of Trigonometric
Function switching to alternative z-parameter

every k Steps

k Cycle

Lengths

Maximum Tree

Heights

% of

Start

Values

2 7759233

7483845

6666741

79946065

8203387

51758320

90

10

10

4 72851705

25009350

101640527

36265720

90

10

8 149450121

18636894

137849328

13201151

90

10

16 132378065 135672835 100

32 380555241 491267040 100

64 60296210

120161535

63678680

191870250

35947884

89028321

25751263

288875294

10

10

10

70

128 182362011

8997879

418726507

244129755

80

20

256 561225035

305935113

231801614

373691537

50

50

512 633619125

218623158

218623158

672871645

662621246

508761773

40

20

40

1024 728877500

251601625

155949650

986558422

529695505

66719039

30

30

40

6. Statistical evaluation

While the positive impact of the break-out method

could be demonstrated in the previous section, it

seems worthwhile to verify that the change to the

transition function does not have a negative impact on

its statistical behavior. One of the most commonly

used methods to evaluate the statistical properties of

pseudo random number generators is the NIST test

battery. It comprises 15 different statistical tests that

each result in a number of passed and failed test

cases. For a “good” PRNG, the proportion of passed

to failed test cases is expected to be greater than 96%

for each of the tests. Figure 7 shows the number of

passed test cases per test, sorted in increasing order

for easier comparability. The blue dotted line is the

result for the original unmodified Logistic Map and

clearly indicates, that using this algorithm as

International Journal of Chaotic Computing (IJCC), Volume 4, Issue 1, June 2016

Copyright © 2016, Infonomics Society 67

cryptographic pseudo random number generator

without any further modification cannot be

recommended due to the significant number of tests

with less than 96 passing test cases. The red solid line

is the result for the Logistic

Figure 6. Maximum cycle length over k for

Trigonometric function

Figure 7. Maximum cycle length over k for
Trigonometric function

Map using a regular break-out with k=1024. The

same modified parameterization as presented in

Section 5.2 has been used. It can easily be seen that

the result of the NIST test suite is comparable to the

result for the unmodified algorithm, so the break-out

method does not have a negative impact on the

statistic behavior of the algorithm in this case.

The same analysis has been performed on the

original and modified Trigonometric function, using

k=1024 and the same parameterization as in Section

5.2. The result shown in Figure 8.depicts, that in this

case the result of the NIST test battery is even a bit

better for the break-out version of the algorithm than

for the original function.

From the analysis above it can be concluded that

the break-out method does not affect the statistic

properties of the examined chaotic functions in a

negative way.

Figure 8. Maximum cycle length over k for
Trigonometric function

7. Conclusion

A simple method to avoid short cycle lengths in

implementations of PRNGs based on chaotic

functions was presented. It could be demonstrated

that the cycle length for the Logistic Map function

can be extended significantly by modifying the

parameterization of the chaotic function for certain

iterations. This might make chaotic PRNGs usable for

an extended range of security applications where

increasing the size of the state is not an option

because of hardware or computational restrictions.

One might even think about this method as a

possibility to “repair” an already built-in weak PRNG

(even in hardware), as the second transition might be

realized in the form of a re-seeding. This approach

leads to significant improvements for both

investigated chaotic functions (Logistic Map and

Trigonometric function).

Further improvements can potentially be achieved

by hardcoding an extra transition. In the case of

several components, the method of extra transitions

could even be extended to link all components

together, so that for all seed values, a larger cycle

length is guaranteed.

Due to the low computational complexity, chaotic

algorithms should be investigated further, e.g. in the

context of RFID with its limitations on chip area and

energy consumption.

As future work, it seems important to gather more

statistically relevant data by analyzing a higher

number of start values, e.g. on a high-performance

computer. Furthermore, extending the investigations

towards fix point implementations of chaotic

functions, that according to our preliminary

experiments seem to exhibit a better behavior than

floating point implementations, seems a reasonable

way forward.

Finally, the structure of graphs where each node

has two outgoing edges might be investigated.

International Journal of Chaotic Computing (IJCC), Volume 4, Issue 1, June 2016

Copyright © 2016, Infonomics Society 68

[1] M. Abutaha et al., “Design of a peudo-chaotic number

generator as a random number generator”, in International

Conference on Communications (COMM), 2016.

[2] A. Beckmann, J. Fedorowicz, J. Keller, and U. Meyer,

“A structural analysis of the a5/1 state transition graph,” in

First Workshop on GRAPH Inspection and Traversal

Engineering, ser. Electronic Proceedings in Theoretical

Computer Science, vol. 99. Open Publishing Association,

2012, pp. 5–19.

[3] A. Biryujkov, A. Shamir, and D. Wagner, “Real Time

Cryptanalysis of A5/1 on a PC”, in Proceedings of Fast

Software Encryption 7th International Workshop, New

York, 2000.

[4] A. Desai, A. Hevia, and Y. L. Yin. "A practice-

oriented treatment of pseudorandom number generators."

International Conference on the Theory and Applications

of Cryptographic Techniques. Springer Berlin Heidelberg,

2002.

[5] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud,

and D. Wichs, “Security analysis of pseudo-random

number generators with input:/dev/random is not robust.” ,

Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, ACM 2013.

[6] K. Entacher, “A collection of selected pseudorandom

number generators with linear structures,” ACPC-Austrian

Center for Parallel Computation, Tech. Rep., 1997.

[7] P. Flajolet and A. M. Odlyzko, “Random mapping

statistics,” in Advances in Cryptology. Springer Verlag,

1990, pp. 329–354.

[8] J. Golic, “Cryptanalysis of Alleged A5 Stream

Cypher”, in Proceedings of Advances in Cryptology –

Eurocrypt 97, Konstanz, 1997.

[9] M. Hamdi, R. Rhouma, and S. Belghith, "A very

efficient pseudo-random number generator based on

chaotic maps and S-box tables." Int. J. Comput. Control

Quantum Inform. Eng 9 (2015), pp. 481-485.

[10] J. Keller, “Parallel exploration of the structure of

random functions,” in Proceedings of the 6th Workshop

Parallele Systeme und Algorithmen (PASA) in conjunction

with the International Conference on Architecture of

Computing Systems, ARCS. VDE, 2002.

[11] J. Keller, H. Wiese, “Period lengths of chaotic

pseudo-random number generators.” in Proceedings of the

Fourth IASTED International Conference on

Communication, Network and Information Security. pp. 7-

11. CNIS '07, ACTA Press, Anaheim, CA, USA, 2007,

http://dl.acm.org/citation.cfm?id=1659141.1659144,

Access Date: 1st October, 2016.

[12] D. E. Knuth, “Mathematical analysis of algorithms.”

in Proc. of IFIP Congress 1971, Information Processing

71. pp. 19-27. North-Holland Publ. Co., 1972.

[13] Z. Kotulski, J. Szczepanski, J., K. Górski, A. Górska,

A. Paszkiewicz, “On constructive approach to chaotic

pseudorandom number generators.” in Proc. Of RCMCIS

2000, Zegrze. pp. 191-203, 2000.

[14] C. Manifavas, G. Hatzivasilis, K. Fysarakis, K.

Rantos, “Lightweight cryptography for embedded systems

- a comparative analysis.” in Proc. 8th International

Workshop on Data Privacy Management and Autonomous

Spontaneous Security, pp. 333-349, Springer, 2014,

http://dx.doi.org/10.1007/978-3-642-54568-9_21, Access

Date: 1st October, 2016.

G. Marsaglia, “The marsaglia random number cdrom

including the diehard battery of tests of randomness,”

1995. [Online]. Available:http://www.stat.fsu.edu/pub/

diehard/, Access Date: 1st October, 2016.

[15] A. J. Menezes, P. C. van Oorschot, and S. A.

Vanstone, Handbook of Applied Cryptography. CRC

Press, 1996.

[16] B. Mennink, B. Preneel, “On the XOR of multiple

random permutations.” in Proc. Applied Cryptography and

Network Security. pp. 619-634, 2015.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E.

Barker, “Statistical test suite for random and

pseudorandom number generators for cryptographic

applications: Special publication 800-22, revision 1a,”

2010. [Online]. Available:

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80

022rev1a.pdf, Access Date: 1st October, 2016.

[18] R. Sedgewick, P. Flajolet, “An Introduction to the

Analysis of Algorithms.”, Addison-Wesley, Reading

Mass., 1996.

[19] J. Szczepanski, Z. Kotulski, “Pseudorandom number

generators based on chaotic dynamical systems.”, Open

Systems & Information Dynamics 8(2), 137-146 (Jun

2001), http://dx.doi.org/10.1023/A:1011950531970,

Access Date: 1st October, 2016.

International Journal of Chaotic Computing (IJCC), Volume 4, Issue 1, June 2016

Copyright © 2016, Infonomics Society 69

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf

