








 

 

Figure 3. Breaking out of a cycle 
 

breaking out of a cycle should be as small as possible. 

Also, the decision when to use a different iteration 

should be simple. 

Note that in general, the possible gain in quality is 

large. If both transition functions were possible and 

equally likely in each state, then each node in the 

graph would have two outgoing edges. For randomly 

chosen edges, our experiments indicate that the graph 

then is weakly connected, with a strongly connected 

component that comprises about 84% of the nodes, 

and a rich inner structure. Let be the average 

distance between two break-out states. In this case,  

should be chosen small enough that at least one 

break-out state is on each of the larger cycles.  

 

4.1 Analysis for Logistic Map 
 

Figure 4 shows the analysis results for a break-out 

to a random node in the state graph for the Logistic 

Map transition function. As a special case of 

breaking-out every  steps on average, we are using a 

counter and break out exactly after  steps, starting 

with . Experiments have been performed with 

different values of k, ranging from 2 to 1024. The x 

axis shows the values of k, while on the y axis the 

maximum cycle length that was found for a run with 

100 different start values is displayed. The random 

transition function that was used for the selection of 

the target node was the AES symmetric stream 

cipher, used in Cypher Feedback (CFB) mode, 

meaning that the output of the encryption algorithm 

was used as input for the next iteration. With AES 

being a highly regarded cryptographic algorithm, this 

creates a pseudo random generator of exceptional 

quality, but even more importantly without any 

expected statistic dependence on the Logistic Map 

function. The result shows a very mixed behavior: for 

some values of k, the maximum cycle length is 

increased compared to the values in Table 2. But e.g. 

for k=64, the maximum cycle length is even lower 

than without the break-out mechanism. The 

conclusion that can be drawn is, that a blind break-out  

 

 
Figure 4. Maximum cycle length for Logistic Map 

using random break-out target nodes 
 

to a random target node will not generally improve 

the state space structure, but might randomly improve 

or degrade it, dependent on the chosen target node.  

 

 5. Parameter Modification 
 

A purely random approach to the break-out 

method apparently does not necessarily have a 

positive impact, as was shown in the previous section. 

Furthermore, implementing a statistically 

independent pseudo random generator in addition to 

the original transition function does not appear very 

efficient from a computational point of view, leading 

to a significantly increased required chip area for 

hardware implementations. So instead of 

approximating a random function with expected 

values as given by [7], we propose to use the chaotic 

function with a different parametrization instead. The 

properties of chaotic functions should ensure that the 

changed parametrization leads to a behavior that is 

statistically independent enough from the original 

function.  

 

5.1 Analysis for Logistic Map 
 

Looking at the Logistic Map function 

, there is not much potential 

for parametrization: the only candidate to modify is 

parameter .  

The analyzed approach was to switch between a 

value of 3.99 and 3.98 every  steps with  ranging 

from 2 to 1024. Table 3 shows the result of the state 

space analysis. It can be seen that breaking out of the 

cycles increases the maximum cycle length 

significantly by a minimum factor of 2 for  up 

to a factor of 227 for . It can also clearly be 

seen that the maximum cycle length increases with . 

Figure 5 shows this relationship. The graph is not 

completely consistent with -values of 32 and 256 

showing a decline compared to the previous values. 
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This can most probably be explained by the very low 

number of 10 start values for measuring the cycle 

lengths. 

 

Table 3. Analysis results of Logistic Map 
Switching to alternative A-parameter every k 

steps 
 

k Cycle 

Lengths 

Maximum Tree 

Heights 

% of Start 

Values 

2 14258373 169347594 100 

4 81839355 219447222 100 

8 92330073 

158592654 

23977917 

5583933 

116649348 

153814118 

39516082 

29542408 

50 

20 

20 

10 

16 166687958 

18456033 

347193629 

66490210 

90 

10 

32 16463304 

106561026 

509498228 

184708805 

50 

50 

64 285351755 

27448135 

186333745 

247720291 

163920805 

138538519 

70 

20 

10 

128 365089092 

490073193 

459489459 

568127512 

90 

10 

256 122507017 

61896137 

1011052679 

766210246 

50 

50 

512 918541890 

505315773 

913649910 

506390293 

70 

30 

1024 1517222425 

997359850 

2056217674 

1168909136 

60 

40 

 

 
Figure 5. Maximum cycle length over k for 

Logistic Map 
   

5.2 Analysis for Trigonometric Function 
 

Similar investigations have been performed for the 

Trigonometric function. Again, the function 

 has not many options to be 

parametrized. The most obvious one is a modification 

of the  parameter. The analyzed modification is a 

switch between the two -values 2 and 3 after  

iterations with  ranging from 2 to 1024. Table 4 

shows the analysis results. Again, the maximum cycle 

length was increased for all -values except for 

 by factors between 7.4 and 75. Figure 5 shows 

the relationship between k and the maximum cycle 

length and shows a similar dependency as for the 

Logistic Map function. 

 

Table 4. Analysis results of Trigonometric 
Function switching to alternative z-parameter 

every k Steps 
 

k Cycle 

Lengths 

Maximum Tree 

Heights 

% of 

Start 

Values 

2 7759233 

7483845 

6666741 

79946065 

8203387 

51758320 

90 

10 

10 

4 72851705 

25009350 

101640527 

36265720 

90 

10 

8 149450121 

18636894 

137849328 

13201151 

90 

10 

16 132378065 135672835 100 

32 380555241 491267040 100 

64 60296210 

120161535 

63678680 

191870250 

35947884 

89028321 

25751263 

288875294 

10 

10 

10 

70 

128 182362011 

8997879 

418726507 

244129755 

80 

20 

256 561225035 

305935113 

231801614 

373691537 

50 

50 

512 633619125 

218623158 

218623158 

672871645 

662621246 

508761773 

40 

20 

40 

1024 728877500 

251601625 

155949650 

986558422 

529695505 

66719039 

30 

30 

40 

 

6. Statistical evaluation 
 

While the positive impact of the break-out method 

could be demonstrated in the previous section, it 

seems worthwhile to verify that the change to the 

transition function does not have a negative impact on 

its statistical behavior. One of the most commonly 

used methods to evaluate the statistical properties of 

pseudo random number generators is the NIST test 

battery. It comprises 15 different statistical tests that 

each result in a number of passed and failed test 

cases. For a “good” PRNG, the proportion of passed 

to failed test cases is expected to be greater than 96% 

for each of the tests. Figure 7 shows the number of 

passed test cases per test, sorted in increasing order 

for easier comparability. The blue dotted line is the 

result for the original unmodified Logistic Map and 

clearly indicates, that using this algorithm as 
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cryptographic pseudo random number generator 

without any further modification cannot be 

recommended due to the significant number of tests 

with less than 96 passing test cases. The red solid line 

is the result for the Logistic 

 

 
Figure 6. Maximum cycle length over k for 

Trigonometric function 
 

 
 

Figure 7. Maximum cycle length over k for 
Trigonometric function 

 
Map using a regular break-out with k=1024. The 

same modified parameterization as presented in 

Section 5.2 has been used. It can easily be seen that 

the result of the NIST test suite is comparable to the 

result for the unmodified algorithm, so the break-out 

method does not have a negative impact on the 

statistic behavior of the algorithm in this case. 

The same analysis has been performed on the 

original and modified Trigonometric function, using 

k=1024 and the same parameterization as in Section 

5.2. The result shown in Figure 8.depicts, that in this 

case the result of the NIST test battery is even a bit 

better for the break-out version of the algorithm than 

for the original function.   

From the analysis above it can be concluded that 

the break-out method does not affect the statistic 

properties of the examined chaotic functions in a 

negative way. 

 

  

Figure 8. Maximum cycle length over k for 
Trigonometric function 

 

7. Conclusion 
 

A simple method to avoid short cycle lengths in 

implementations of PRNGs based on chaotic 

functions was presented. It could be demonstrated 

that the cycle length for the Logistic Map function 

can be extended significantly by modifying the 

parameterization of the chaotic function for certain 

iterations. This might make chaotic PRNGs usable for 

an extended range of security applications where 

increasing the size of the state is not an option 

because of hardware or computational restrictions. 

One might even think about this method as a 

possibility to “repair” an already built-in weak PRNG 

(even in hardware), as the second transition might be  

realized in the form of a re-seeding. This approach 

leads to significant improvements for both 

investigated chaotic functions (Logistic Map and 

Trigonometric function).  

Further improvements can potentially be achieved 

by hardcoding an extra transition. In the case of 

several components, the method of extra transitions 

could even be extended to link all components 

together, so that for all seed values, a larger cycle 

length is guaranteed. 

Due to the low computational complexity, chaotic 

algorithms should be investigated further, e.g. in the 

context of RFID with its limitations on chip area and 

energy consumption.   

As future work, it seems important to gather more 

statistically relevant data by analyzing a higher 

number of start values, e.g. on a high-performance 

computer. Furthermore, extending the investigations 

towards fix point implementations of chaotic 

functions, that according to our preliminary 

experiments seem to exhibit a better behavior than 

floating point implementations, seems a reasonable 

way forward. 

Finally, the structure of graphs where each node 

has two outgoing edges might be investigated. 
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