
Securing Web Applications with OpenID Connect, OAuth 2.0 and

Two-Factor Authentication

Richard Madden1, William Farrelly1, Kevin Curran2
1Computer Science Department

Letterkenny Institute of Technology, Letterkenny, Ireland
2School of Computing, Engineering and Intelligent Systems

Ulster University, Derry, N. Ireland

Abstract

Usability and security are vitally important as the

Internet is now classified as the new normal, and

sometimes the only, medium for contact between

people, private businesses, governments, and other

organizations, identity management becomes a vital

component of online communications. To access any

online resources today requires end-users to register

their identity with a Service Provider (SP) that

provides and operates the service or services. The

registration process involves end-users supplying a

variety of personal data about themselves. This data

is then stored with the Service Provider. Identity and

Access Management (IAM) is the digital format for

the management and control of user information, but

what does that mean? Identity & Access,

Management covers a large range of technologies

because it is a framework of policies and

technologies for ensuring that the proper people in

an enterprise have the appropriate access to

technology resources [1]. Single Sign-On, Public

Key Infrastructure, Active Directory, Kerberos,

Governance, Enterprise Directory, Privileged Access

Management are some of the main components in the

IAM space. There are many technologies available

today that offer single sign-on (Active Directory,

Enterprise Directory, Kerberos, SAML, OpenID

Connect, WS-FED, WS-TRUST), and although each

one offers that single sign-on experience in terms of

security however OpenID Connect is now seen as the

go-forward solution because it is a decentralized

standard, meaning it is not controlled by any

individual or set of individuals, website or service

provider [2]. We explore the standards of the

OpenID Connect (OIDC) protocol that was

introduced by the OpenID Foundation. OIDC is built

on a version introduced earlier called OAuth 2.0.

The reason behind this came from the fact that the

OAuth protocol was being used for user

authentication and authorisation, however, OAuth

was only ever an authorisation framework. Now with

OpenID Connect, it is an almost comprehensive

protocol for the implementation of user identification

and authorisation. The easiest way to understand the

difference between each protocol is, OIDC issues

access tokens (for authentication) and OAuth 2.0

issues id tokens (for authorisation). The first part of

this paper introduces the OpenID Connect protocol

(which takes care of authentication and

authorisation), while later parts discuss Multi-

Factor Authentication that will showcase problems

that both the OpenID Connect (OIDC) protocol and

Multi-Factor authentication can solve. Finally, a

study of current implementations, how to adopt the

OpenID Connect (OIDC) standard into a web

application, while also enabling two-factor

authentication will be explored.

Keywords: OpenID, Authentication, OAuth, security,

1. Introduction

Any account used online in today’s world is

under attack from sophisticated actors looking to

steal their identity. Therefore, it is essential to secure

anything that requires an end-user to enter a

credential to gain access, but it is also important to

find the balance between a nice user-friendly logon

process and security. Today, most organizations have

migrated most services to the cloud, and because of

this, the requirement from an end-user is to create

multiple accounts to access these resources. What

then ends up happening is the same password will be

used across these platforms, meaning when an

account is compromised the sophisticated actor may

get access to a wide range of resources. Obviously,

in an enterprise it’s important to provide training to

end-users around password management, how to

identify a genuine service, etc, however, an

application needs to have a safe and secure

authentication method and authorisation method to

protect end-user data. Implementing the OpenID

Connect protocol, OAuth 2.0 Authorization Code

Flow to manage authentication and authorisation,

and then followed up with a Two-Factor

authentication challenge will do exactly that. Identity

and Access Management (IAM) refers to the ability

to manage user identities and their access to IT

resources such as systems, applications, files, and

networks. Identity and Access Management solutions

have been a critical aspect of IT infrastructure for

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 985

many years now as they help to make work happen.

However, many IT admins have come to discover

that traditional Identity and Access Management

solutions are struggling to manage the complexity of

modern networks. As a result, IT organizations are

now looking for new approaches to Identity and

Access Management. Historically, the most popular

IAM platform has been Microsoft Active Directory

(AD). Active Directory is an on-prem IAM platform

that was designed for on-prem, Windows-based

environments. When AD was introduced in 1999,

most IT networks were on-prem and Windows-

based. Windows has remained the most popular

enterprise operating system ever since. So it's no

surprise that Active Directory is now ubiquitous.

However, IT networks started to change as MAC

systems, Linux servers, web applications, alternative

storage solutions, Google Apps, AWS, and the Cloud

came to market in the mid-2000s. Solutions such as

these were not Windows-based, nor were they on-

prem. Consequently, Active Directory

implementations began to struggle, and to this day

still do. Of course, IT organizations could patch

Active Directory with third-party add-ons such as

identity bridges, web applications single sign-on,

privileged Identity Management, and more to

mitigate some of these traditional challenges.

However, the trouble with this approach is that it

adds significant cost and complexity, not to mention

that modern IT organizations would rather shift their

identity management infrastructure to the cloud.

The good news is that there are next-generation

cloud IAM platforms available today, one of those

being Okta which is introduced as part of this

project. This is effectively Active Directory

reimagined for modern networks. Think of this as a

virtual IT resource, without the help of costly third-

party add-ons and anything on-prem. This type of

platform allows user management, secure

connections to their systems, applications, files, and

networks regardless of the platform, provider,

protocol, or location. The discussion around identity

ownership and validation/verification is shared,

meaning it is not up to just one entity (be that public

or private) to have exclusive possession or control.

For example, if you look at the Republic of Ireland

the Government can use Personal Public Service

Number (PPSN) to identify individuals living on the

island in Ireland, and of course, other countries

around the globe will have something similar. In the

United States, they can use Social Security Numbers

(SSN) to identify their citizens. If you look at a

private firm they may use one framework for

identifying their clients and then a separate

mechanism to identify employees. Also in many

cases, a single person can have many identities. For

example, physical identity can be their driving

license, passport, employee card, or even a student

card.

Similarly, a single person can have multiple

online identities. Someone may have an electronic

bank account, an email address, or an address with a

social network. Every such identification refers to

the same person but is retained in separate

institutions. Although the search for a common,

unified identity continues, OpenID Connect seeks to

establish an integrated identity authentication system

across multiple public and private institutions.

OpenID Connect (OIDC) offers a secure, easy, and

efficient method for individuals to represent

themselves to a wide range of applications and

service providers using one or more of their

identities held by a trustworthy Identity Provider

(IDP). OpenID Connect has received a good

endorsement and widespread acceptance from the

world's leading high tech firms, such as Google,

Amazon, and Facebook, since its launch in 2014 (see

Figure 1).

OpenID Connect takes the pressure off-web

application developers to expend additional

manpower and resources thinking about how to

manage user data stores that house credentials

because if OIDC is being considered as the IAM

stack for the web application the likelihood is the

OIDC provider that the web application is going to

integrate with for its authentication will be external

to the web application meaning the ownness is on the

external party to manage those user credentials.

With this type of authentication mechanism, what

then happens is that authentication is assigned to

those trustworthy organizations who have

specifically developed committed, purpose-built

IDP. In turn, for users who can provide or who

choose to use their Google, Twitter, or Facebook

identity to access the resource in question,

authentication becomes very convenient [3]. This

paper will aim to demonstrate how OpenID Connect

will soon be the cornerstone of Identity and Access

Management. This research explores the OpenID

Connect (OIDC) protocol, OAuth 2.0, and adding

multi-factor authentication to any web application.

Researching these three components will show how

it can help not only large scale organizations but

small to medium enterprises achieve that ideal

Identity & Access Management world. We explain in

detail the OpenID Connect standard as drawn up by

OpenID Foundation. This will also include its key

features and any potential security and/or even

privacy issues. Potential improvements to the OIDC

standard are briefly touched on and comparisons

between Security Assertion Markup Language

(SAML) 2.0 and OpenID Connect are explored. To

date, there has not been a body of academic work

that explores all three protocols in an effort to

provide authentication and authorisation of end

users. There are papers available that look at using

the Oauth 2.0 Authorization Framework for

authentication (which is incorrect and against spec)

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 986

Figure 1: Use Twitter, Google, or Facebook Identity

and then talk about implementing MFA if they had

more time. Any diagram that is not referenced to an

external source is my own work. Threat actors are

now rampant across the internet looking to steal user

identities with specifically crafted social engineering

attacks and credential harvesters, so now more than

ever it’s important that any business, organization, or

enterprise implement the correct single sign-on

solution but specifically also enabling a solution with

two-factor authentication. Of course, two-factor

authentication also has its weaknesses, for example,

some applications that enforce 2FA allow the user to

input a code sent via SMS to their mobile device, and

although this is still verifying your identity is it open

to abuse. Rather than being created by the system

itself, the code is transmitted via SMS. This provides

the opportunity for an interception of the code. There

is also a possibility of SIM swapping, whereby a

sophisticated actor obtains a SIM card with the

phone number of the victim. The SMS messages sent

to the victim will then be intercepted by the

sophisticated actor giving them the authentication

code. For this reason, it is important when

implementing 2FA SMS should not be allowed nor

should the code be sent to the user's email address.

User passwords will still get compromised, however,

that second identity challenge safeguards not only

the user's data but also the data belonging to the

organization/enterprise in question. This research

will focus on the correct way to implement OIDC,

OAuth 2.0, and two-factor authentication to help

with protecting data from threat actors.

The purpose of this research is to examine the

OpenID Connect protocol (its only purpose is to

handle user authentications) and as part of OIDC, the

OAuth 2.0 Authorization Code Flow is enforced (i.e.

the OpenID Connect component in charge of

authorisation), and finally, the research explores how

to integrate an OIDC Provider with a Cloud Identity

Provider to enable secure user authentication and

authorisation.

2. OpenID

Users, roles, and access are some of the terms

that has been heard concerning Identity and Access

Management. Identity is how one is represented

online, sometimes through a social log-in, work

email address, your personal email address, or even

an application. So, an identity trying to gain access to

a protected resource securely is what Identity and

Access Management strive to provide. Some of the

challenges that Identity and Access management

need to address are things like password

management, alleviating identity silos, and securing

APIs . Also being able to have cross-domain

federation so users can use a single identity across

multiple systems. But to secure endpoints it’s

important the correct technologies are used and then

enforce strong authentication and authorisation

policies as seen in Figure 2. There is also account

management and provisioning that IAM systems

provide, so things like creating profiles, setting up

security questions, access control based on role or

attributes mapped in the directory. From the outset

Identity and Access Management looks like it's

simply about access but it is not if you look at the

bigger picture. It is about ensuring that end-users or

employees have a great user experience and this is

balanced out with security.

2.1. OpenID Connect (OIDC)

The OpenID Connect protocol is explained in

detail in this section. While OpenID Connect is built

based on OAuth 2.0, it has addressed some of the

areas that were missing in OAuth 2.0. OpenID

Connect is a basic layer of identity that strengthens

the protocol of OAuth 2.0 to enable an end user’s

identity to be checked by applications [4]. This is

possible by simply authenticating the end-user

against the Authorization Server/Host, and in

addition to that simple but yet important information

about the user can be provided through this

authentication mechanism.

OpenID Connect can be used by web browsers,

mobile applications, and browser-based clients to

obtain information about authenticated sessions and

end-users. OpenID Connect is scalable and

extensible [5]. It encourages participants to use

optional features such as OpenID Provider discovery,

end-user identity data protection, and, where

applicable, session management.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 987

Figure 2: Enforcing Strong Authentication and Authorization Flows

OpenID 2.0 is the precursor for OpenID Connect,

and like OpenID 2.0, OpenID Connect executes

many of the same functions with Application

Programming Interfaces (APIs) that allow

integrations with many applications both mobile

applications and native applications. Furthermore,

OpenID Connect also allows for expanded methods

for effective cryptography and signing. However,

OpenID Connect is fully implemented into the

OAuth 2.0 protocol itself, unlike OpenID 2.0 and its

incorporation with OAuth 1.0, which involved an

expansion. With OpenID Connect, three separate

entities are needed to perform end-user

authentication. These are 1. The end-user or the

resource owner; 2. A client looking for access to the

end-users resource and 3. OpenID provider performs

user authentication to the client (Resource Owner /

Authorization Server) [6]. Figure 3 shows the

relationship between the entities. In some scenarios

the Authorization Server and Resource Server reside

on separate entities, this relationship is portrayed in

Figure 4.

2.2. OpenID Foundation

The standards around OpenID Connect came

from the OpenID Foundation. This foundation is the

founder, publisher, keeper, and even guardian of the

OpenID principles. It also maintains the OpenID

culture and technology and nurtures them. The

OpenID Foundation is a non-profit international

standardization organization of individuals and

companies committed to enabling, promoting, and

protecting OpenID technologies [7]. The OpenID

Foundation requires OpenID Connect adopters and

implementers to approve their implementations to

ensure compliance and to globalize with implement

-ations. The qualification process of the foundation

uses the novel self-certification and compatibility

method to the test suites established by the

foundation. Once certification is achieved,

implementations are entitled to publicly show the

certification label "OpenID Certified" [7]. This is

necessary to achieve user ‘buy-in’ and to promote

confidence in the OIDC protocol and its

implementations.

2.3. OAuth 2.0 Authorization Framework

OpenID Connect is based on the OAuth 2.0

Authorization Framework. This framework then

allows applications to gain restricted/limited access

to an HTTP service. This can be done by initiating a

permission contact process between the resource

owner and the HTTP service on behalf of the

resource owner, or by encouraging the third-party

application to gain consent on its behalf [8]. OAuth

2.0 was developed to help implement proper security

control between client to server authentication.

Before OAuth 2.0 if a request was made from a

client to a protected resource (resides on a server) it

was done so using credentials provide by the

resource owner. This was the result of highlighting a

large security flaw (some mentioned) in the

conventional client to server authentication

frameworks because to allow third-party applications

to access the resource meant the owner of the

resource had to share its creds with those third-party

applications [9]:

• Third-party apps are expected to save the login

credentials of the resource owner for future use.

Usually, that's either a password in plain text or a

hash. Also, considering the inherent safety

vulnerabilities in passwords, servers must support

password authentication.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 988

Figure 3: User, Client, and OpenID

Provider relationship

Figure 4: Parties who separate both functions

• Third-party apps are equipped with grossly

granular access to the properties of the property

holders. This limits the potential of resource

owners to restrict the length or accessibility to a

small subset of resources.

• Without revoking access to all third parties, the

resource owner cannot revoke access to a single

third party. And only by modifying the password

of the third party will this be done.

OAuth then came into play and broke up these

elements by adding an authorisation layer and

distinguishing the client's function from that of the

resource owner. This meant the client must request

access to the protected resource. With this new layer,

the client will be issued an access token. With this

token, it has a scope, expiration time, and other

attributes. These tokens are provided to these third-

party clients/applications with approval from the

resource owner by an authorisation server. To access

the secure services managed by a resource provider,

the client uses that access token [9]. To provide some

clarity, a resource owner (end-user) allows a video

recording service (client) access to their protected

videos which are hosted on a video share (resource

endpoint) without ever providing any username and

password to the recording service. So, with OAuth,

the user invokes an authentication request with any

authorisation server that is trusted by the video

recording service (client). This service can then issue

the video recording service (client) an access token.

2.4. OpenID Connect Principal Function

OpenID Connect provides that Identity Layer to

OAuth. OpenID Connect is a simple identity layer

that sits on top of the OAuth 2.0 protocol. It enables

clients to verify the identity of the End-User based

on the authentication performed by an Authorization

Server [4].

OpenID Connect also obtains basic profile

information about the end-user using REST APIs.

OpenID Connect is needed because even though

OAuth provides authorisation, it does not provide

authentication. With OAuth, the user authenticated

and proved they were present to the Authorization

Server, but the sole purpose of this was to create and

grant an access token to the client application.

Figure 5: OpenID Connect Authentication Flow

For clients to leverage this extension in the

Authorization request they simply include the

OpenID scope value [4]. What is then returned is

something called an ID Token. This ID Token is ID

token is encoded as a JSON Web Token or JWT.

Often referred to as OpenID Providers (OPs) are

OAuth 2.0 Authentication Servers that implement

OpenID Connect. Relying Parties (RPs) are quite

often referred to as OAuth 2.0 Clients using OpenID

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 989

Connect. Figure 5 shows the OpenID Connect

protocol in a simple form.

2.5. Authentication – What it means in the

OIDC world.

Authentication in OpenID Connect means

challenging the end-user to confirm their identity

(currently not logged in to the application) or it can

mean that a determination is made that the end-user

is already logged and no authentication is necessary

(the user has a valid session). Upon successful

authentication, an Identity Token (JSON Web

Token) is sent from the server to the client. The

identity token is similar to an ID card or passport. It

contains several required attributes or claims about

that end-user but also how the end-user was

authenticated. These claims are Subject, Issuing

Authority, Audience, Issue Date, and Expiration

Date.

• The Subject is a unique identifier assigned to a

user by the Identity provider, for example, a

username.

• The Issuing Authority is the Identity provider that

issued the token.

• The Audience identifies the Relying Party who

can use this token.

• The Issue and Expiration Date is the date and

time the token was issued and will expire.

• Several optional claims help the relying party

validate the ID token, such as Authentication

time which shows the time the End-User was

authenticated, and Nonce values which mitigate

replay attacks.

• The token may also contain additional requested

claims about the subject such as name and email

address.

With OpenID Connect there are three avenues

authentication can follow which determine how the

tokens will be sent back to the client [4] -

Authorization Code Flow, Implicit Flow and Hybrid

Flow. The Identity token is encoded as a JSON Web

Token or JWT. In this token are what is called claims

and they form part of its payload. Like an access

token, the Identity token is also digitally signed using

JSON Web Signature to achieve integrity and non-

repudiation. The Header, Payload, and Signature are

combined into a JWT and are encrypted with JSON

Web Encryption for confidentiality [4]. OpenID

Connect uses scopes to retrieve information in the ID

token.

2.6. Scopes

The OpenID Connect specification contains four

standard predefined scopes (Profile, Email, Address,

Phone) which are used to supply the client

application with consented user details. The OpenID

scope is a mandatory scope to specify that OpenID

Connect is required. For example, the scope

“profile”, requests access to the End-Users default

profile claims. In the initial authentication request,

the client application can request scopes or claims to

be returned in the Identity Token. Alternatively, they

can be requested using an access token through a

REST API call to the UserInfo endpoint.

The OpenID Connect Identity Provider has many

End Points with which the End-User and Client

Application interact. These are the Authorization

Endpoint, the Token Endpoint, and the UserInfo

endpoint [10]. The Authorization endpoint is where

the End-User is asked to authenticate and grant the

client application consent to access their identity, and

any other required information such as email, or

address. This extra information is called UserInfo

claims. Once consent is given, this endpoint passes

back an Authorization code. This is the endpoint in

which the End-User indirectly interacts with the

Identity Provider through a user agent, for example,

a browser.

The token endpoint authenticates the client

application. It also exchanges the authorisation code

from the Authorization endpoint, for an ID token, an

access token, and an optional refresh token. The

UserInfo Endpoint is an OAuth 2.0 protected

resource that is used by the Identity Provider to

return consented user information or claims to the

client application, provided that a valid access token

is presented.

Claims are values containing end-user

information, but also information about the OpenID

Connect service itself. Example claims can be last

name, telephoneNumber or first name. The party

responsible for issuing these claims are the OpenID

Connect providers. These are bundled up into

security tokens called ID Tokens. These tokens are

issued based on trust relationships that are built using

federated technologies.

2.7. JSON Web Tokens

JSON Web Tokens (JWT) are an open, industry-

standard RFC 7519 method for representing claims

securely between two parties [4]. So think of them

like JSON payloads that one party will send to

another and the receiving party will be able to make

sure that the payload that they received was

effectively sent by another party whom they are

federated. JWT is just for authorisation not

authentication. Authentication is about taking in a

username and a password and authenticating to make

sure that the username and password is correct.

Authorisation is making sure that the user that sends

request to the endpoint/server/application is the same

user that actually logged in during the authentication

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 990

process. At the beginning, there is the user

authentication challenge with email and password.

This is sent in a POST request to the server. The

server then creates a JSON web token. This JSON

web token is encoded and signed using a secret key

(This secret key is known by the application and the

authorisation server. This is generated/provided

during the integration process). So the authorisation

server will know if it has been tampered with. The

JSON web token is then sent back to the client. This

JSON web token has all the information about the

user in its

payload (claims). The client is then going to POST a

request to the authorisation server with that JSON

web token with the authenticated end users claims

(payload). The authorisation server verifies that this

JSON web token has not been changed/tampered

with since it was signed [11]. Using the jet.io website

here is sample JSON web token as seen in Figure 6 .

On the left there is an encoded version of a JSON

web token and on the right is the decoded version of

that JSON web token showing the three different

parts, header, payload and signature. The header

determines the algorithm to encode and decode. The

payload which has all the information (claims) and

lastly the signature which allows verification of that

token.

Figure 6: The jwt.io website

This verify signature as seen in Figure 6 is the

most important part because it is going to verify that

the JWT was not altered. It does that by taking the

first two portions of the token separated them with a

period and base64 encodes them, it then takes the

algorithm that is defined in the header and it uses

that algorithm and the secret to encrypt the token.

So, if this token was to be tampered with past this

point the signature will no longer match. When the

client or when the server gets the JSON web token

the header and payload will be decoded, then

combined together and hashed again with the

algorithm defined in the header. The last portion of

the key is then validated against what has just been

decoded versus what was just received and if it does

match then it has not been tampered with.

3. OpenID Connect (OIDC) & MFA

Design

We document the implementation and integration

of a web application to an OpenID Provider (OP)

using the Authorization Grant Flow. The web

application itself will be hosted on an external-facing

Linux host but built using NodeJS and Jhipster.

JHipster is an open-source application generator used

for web application development and microservices

using Angular or React and the Spring Framework.

As part of this application build, you can specify

OpenID Connect / OAuth 2.0 as the authentication

and authorisation protocol. This web application will

be hosted on an external-facing public cloud server

over HTTPS as seen in Figure 7 . The web

application will then be integrated with Okta using

the OpenID Connect protocol. Okta will act as the

OpenID Provider and multi-factor authentication will

also be enabled in the Okta tenant enabling that two-

factor authentication challenge for the end-user base.

The application will have two types of user roles,

Administrators and Users. Post a successful

authentication to this web app the administrators will

have full access allowing them to see servers

resources, logs, etc., however, a standard user will

not have this level of view. As part of the

configuration in the Okta tenant groups can be

created, users can then be added to these groups, and

post a successful authentication the id_token sent

back to the application will include the user's group.

The web application will then decode the token and

based on the group found in the token it then decides

what the user can see and do in the web application.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 991

Figure 7: Application Infrastructure

Access control to the web application can be

achieved by the administrator of the Okta Tenant

who can create the users manually. They also bulk

upload leveraging the Okta API using curl or

postman, using API keys for authentication and set

the tenant to allow any user to register through the

web app front end. With any of these options the user

upon the first login, if they are found to not have a

device registered for the two-factor authentication, as

part of that login process they will need to do so to

gain access to the application. Any new user

registrations can also be auto-provisioned so they are

added to the user group. This allows granular

control.

3.1. Identity Providers and OpenID

Providers

An identity provider (IDP) is a system entity that

creates, maintains, and manages identities and

information for principals while also providing

authentication services to service providers and

relying party applications in a federated or

distributed network. Identity providers offer end-user

authentication as a service. In reality, it is software

that implements the identity provider part of the

security access markup language (SAML for short)

or OpenID Connect Federation protocols. Popular

identity providers that reside online are Google,

Instagram, and Amazon Web Services (AWS).

Whereas for corporate or enterprise usage some

popular IDP’s are Azure AD, Okta, and PingIdentity.

An OpenID Provider (OP), on the other hand, is an

intermediary between an identity provider and

applications wishing to authenticate end-users. An

OpenID Provider (OP) is something that allows

applications to integrate with identity providers to

provide single sign-on for its end-user base. It also

allows an application to integrate with multiple

Identity Providers. Most vendors now provide IDaaS

solutions (Identity as a Service) so one option would

be outsourcing all end-user account management and

security to a third-party vendor. Some may find this

simple and also cost-effective. Depending on the size

of the company/enterprise/corporation they may

decide to stand up an Identity Provider that can be

managed in-house by their internal security team.

With most Identity Provider Software nowadays they

come bundled with adapters that have many OpenID

Connect capabilities.

3.2. OpenID Connect - Single Sign-On

Single sign-on is an authentication method that

allows end-users to log into multiple resources and

applications with one set of credentials. More often

than not end-users will only need to authenticate

once per session unless they switch browsers, clear

cookies, or invoke an authentication request from a

new device. In the world we now live in end users

expect this type of single sign-on experience from all

web-based applications. This does come with its

challenges and hurdles however with OpenID

Connect and OAuth 2.0 they have set the Single

Sign-On baseline as being a viable standard for a

World Wide Web. In OpenID Connect, session

management is accomplished using secure cookies.

End-user sessions start when the Relying Party

receives and then validates the Identity Token for the

end-user. From that moment the session is

maintained using the cookie. Figure 8 illustrates an

end-user OpenID Connect Single Sign-On.

3.3. Integrations of the OIDC protocol

OpenID Connects strength lies through its

widespread acceptance as an authentication standard

and this allowed implemented improvements to help

with strengthened security and standardization. All

the tools required for an OIDC implementation are

listed in this section. This will cover the interaction

between Relying Parties, OpenID Providers, and End

Users. Attributes used The OpenID specification

specifies the attributes used by both the OpenID

Providers and the Relying Parties. As with any

Single Sign-On integration, some OIDC providers

will require dynamic, out of band and static

configurations. Others will have the luxury of using

pre-configured installations. For an integration that

does not use a pre-configured relationship between

an OpenID Provider and a Relying Party, the

specifications around OpenID Connect Discovery

and OpenID Connect Dynamic Client Registration

must be followed. When a Relying Party integrates

into an OpenID Provider they may have certain

configuration settings/features specified as

mandatory that must be implemented on the Relying

Party side. But there will be also some marked as

optional.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 992

Protected Resource requested

User authenticated,
authorization endpoint send
back auth code to user agent

Auth code consumed by application
POST request using auth code, client

id and client secret.

User agent receive auth code

User agent not yet authentication
then redirected to authentication

Redirect parameters:
response_type=code

If ID token required this parameter its
added:

scope=openid profile

Validate clientID, Issuer and
expiration from access token

Token
information

Valid ?

send an exception token not valid,
redirect user to authentication

No
POST request to validate access token

Yes

Token Valid ?
No

validate aud, Issuer and expiration
from IDToken

Yes

ID Token
informaiton

Valid ?

No
POST request to retrieve the list of

keys used to sign ID tokens

Yes

consume key list and retrieve
required key pair.

validate signature of IDToken

IDToken
Signature Valid

?

Yes

Consume user information from ID
token

Redirect is triggered

User not authenticated

Validate client id, client secret and
auth code

Return access token, refresh token
and ID token if requested

ID Token
requested ?

Yes

No

Consume user information (sub)
from access token

No

Figure 8: OpenID Connect Single Sign-On Flowchart

The OpenID Connect protocol specifies that the

distinction between required and optional features is

critical because it is what determines what security

features must be enabled versus what security

features can be used by the relying party if desired.

Also, much analysis into the OpenID Connect

protocol has shown that whilst the specification is

logically strong, the lack of alignment with the

specification and deployment flaws is the biggest

factor of security breaches. Most of this will come

down to what type of OAuth Client is in play, for

example, a client that would be classed as

confidential would be the best use of the

Authorization Code Flow. Authorization Code Grant

Type Flow would be as follows. An end-user

browses to an application that is integrated via

OAuth with an OpenID Provider.

The Application identifies the end-user and

redirects them back to the Authorization Endpoint.

An example redirects within a browser to an

Authorization Endpoint would look similar to the

following. In the following example, there is a nonce

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 993

parameter value specified. However, this is optional.

It is a string that is used to associate the Client

session with an ID Token and to mitigate replay

attacks [12]. Scope, response_type, client_id,

redirect_uri and state values are required. The end-

user is then authenticated and the OpenID Provider

would return the requested authorisation code and

state back to the redirect URI.

Once the application has the Authorization Code,

it can then be used to get an access token. This

HTTP POST needs to be authenticated using the

client_id and client_secret obtained during the

integration with the OpenID Provider. A sample

Token Endpoint would look like

https://sample.com/as/token.oauth2. The following

parameters are required within the request: client_id,

client_secret, grant_type, code and redirect_uri.

Access tokens should then be validated against the

Introspect Endpoint. Authentication is required by

presenting the client_id and client_secret. The

Introspection Endpoint will respond with a JSON

with an ‘active’ flag which is a Boolean value of

whether or not the presented token is currently

active. The value will be “true” if the token has been

validated successfully. ID Tokens (received when

using OpenID scope) will also require validation by

the application. Once validated user information can

be consumed from the ID Token (email claim) and

the application can authorize the user to access

resources. The validation of the ID token includes

evaluating both the payload and the digital signature

[13].

3.4. OpenID Connect overview

Figure 9 illustrates how the sign-on process will

look from a technical standpoint for this project.

Using the OpenID Connect protocol for user

authentication is far more superior to most other

offerings on the market today The Resource Owner

in this scenario will be the end-user trying to access

the application. The client is the configuration stored

in the server where the web app resides. This holds

all of the information to initiate the SSO request.

Okta’s Authorization Server will act as a token

endpoint and the resource server is where the web

application will be hosted. The application itself will

run on port 8080 over HTTPS, however, iptables are

used to create a rule to direct traffic from 443 to

8080. This allows for a nice user experience as no

ports will reside in the URL string.

3.5. OIDC system protocol flow

Figure 10 describes each step taken on how an

end-user will be authenticated by the Okta service.

This would not be possible without the OpenID

Connect integration from web application to the Okta

identity service. It also shows the two-factor

authentication challenge prior to any application

authorisation. The application decodes the token and

looks for the users ROLE attribute that is in the

id_token. This is used to determine what the user can

or cannot do.

The user accesses a protected resource and is

redirected to Okta for authentication.

• Okta authenticates the user and generates an

authorisation code from the authorisation

endpoint after validating the client ID and client

credentials.

• The application makes a backend call to the token

endpoint of Okta with the short-lived

authorisation code.

• Okta issues Access Token and ID Token. ID

Token provides user attributes.

• These tokens are validated and decoded by the

spring library and user attributes are sent in a

JSON format response.

• The application reads those user attributes and

manages the session of the authenticated user.

3.6. OIDC User Story

The use cases/user stories talk - about how users

communicate with the third-party Identity provider

(Okta) to gain access to any application integrated

with them to prove single sign-on.

Stake Holders: End-Users, Secure Web Servers,

Third-Party Identity Provider, Identity Repository

Brief Description: This user story explains how

after a user has successfully authenticated to the web

application integrated with Okta, from that point as

long as the user has an active session they will

successfully be able to access other applications that

are integrated with the same Okta tenant without any

authentication challenge.

Goal: Obtain an id_token, access token, and refresh

token.

Successful Result: The end-user can access the

protected resources required.

Prerequisites:

i. The user has an account created in the Okta user

repository

ii. Application is running and accessible

iii. Application is integrated and protected by Okta

Initiation: End-user accesses the web application

from their machine.

Standard Flow of events:

i. End-user goes to the web application and clicks

Logon.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 994

https://sample.com/as/token.oauth2

Figure 9: High-level end-user authentication flow

Figure 10: OIDC High-Level Authentication Flow

ii. The application redirects the end-user to the Okta

email and password login form.

iii. The user enters their credentials. These

credentials are verified by Okta.

iv. If the first factor was a success the user is then

challenged for a second-factor authentication.

v. End-User then completes the second-factor

authentication challenge.

vi. Okta validates the second factor and then posts

the id token and access token to the application.

vii. The application then looks at the id token

attributes, based on the user group (Admin versus

User) the correct view then loads.

Assumptions: The user provides valid credentials.

Alternate Flow: Bad credentials will not be

accepted. End-user will be redirected back to the web

application front end.

Post Condition: The end-user was able to access the

protected resource correctly, no errors encountered.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 995

3.7. OpenID Connect Best Practices

In light of the versatility and usability of the

OpenID standard, several areas around security must

be addressed with OpenID Connect Client profiles.

These profiles cover browser-based (user-agent),

web applications, desktop, passive and native

applications (fat clients). This section will look at

profile types and the threats that are associated with

them and what attributes can be used to further

secure an OpenID Connect implementation and or

integration.

Client authentication will only occur if the

authorisation server has established with web app

clients, better means of client authentication other

than a client password are encouraged. The

protection of client passwords as well as other

credentials associated with the client must be

protected. The client secret that is issued by the

authorisation server to the client must not be shared

with any other clients. If client authentication using

client secret is not possible the authorisation server

must look into other ways of confirming client

identity, for example, private key validation. The

client can first prepare the keys and allow the

Authorization server access to the public key. The

client then signs the JSON with the private key

before it is transported to the authorisation server.

Upon receipt, the authorisation server token endpoint

will extract the assertion from the client and then

verify the JSON using the public key. Another option

is mutual TLS client authentication. With this

validation, both the client and the token endpoint

must use mutual TLS. Any token that contains

information/attributes/credentials belonging to an

end-user or entity must be kept confidential in

transportation and storage, and only exchanged with

the authorisation server, the client, and the resource

server. All transportation must be done over HTTPS

when using OpenID Connect or OAuth 2.0 flows.

Implicit Grant flow requires the access token to be

transported in the Uniform Resource Identifier

Fragment leaving this open to exposure to unwanted

parties. Authorization Servers have to ensure that

unauthorized parties are unable to generate, modify,

or guess access tokens to produce valid access

tokens. Clients should use minimal scopes when

requesting access tokens. When choosing how to

honour the requested scope, the authorisation server

should take into account the client identity and may

issue an access token with fewer rights than

requested. Authorization codes should be sent over a

protected connection, and all redirect URI should

make use of HTTPS over TLS. As authorisation

codes are distributed via browser redirects, they may

theoretically be exposed via web browser history and

headers of the HTTP referrer. These codes must be

short-lived and used only once. If an authorisation

server sees multiple requests to exchange a code for

a token all tokens should then be revoked for that

client.

The authorisation code grant type allows the

client to specify a redirect URI through the use of the

redirect_uri parameter. This opens up an attack for

sophisticated actors to manipulate the redirect URI

parameter which will then force the authorisation

server to redirect the end-user to the bad actors

specified URI. A bad actor can setup and integrate a

client to kick off an authorisation flow. The bad actor

can then initiate an authentication request from their

browser to the authorisation server. Doing this will

allow them to obtain the authorisation URI from the

genuine client and then replace that with their

redirect URI which they control. This allows the bad

actor to manipulate the end-user which in turn will

allow access to the client. After the authentication

request reaches the authorisation server the end-user

will be asked to present a credential to confirm their

identity. Once validated the end user will then be

redirected to an endpoint that is controlled by the bad

actor with the authorisation code. With this

authorisation code now in the control of the bad

actor, it will allow them to post this code to the client

using the original redirection URI provided by the

client. The client will then take this code and provide

an access token to the bad actor allowing them to

access the end-users protected resource. This type of

attack can be avoided if the authorisation server

ensures that the redirect URI used to retrieve the

authorisation code is identical to the redirection URI

gave when the authorisation code is exchanged for

an access token. For any client that is public-facing,

a redirect URI must be provided. Any redirect URI is

that is presented in the request must be verified

against the redirect URI that is configured at the

authorisation server.

Older integration often uses the Resource Owner

Password Credentials Grant type. With this type of

integration, the credentials used (i.e. username and

password) can obtain the access token. The risk

factor is reduced because the client does not store

these credentials however if these credentials were to

be known by a bad actor they would have full access

to the token exchange. It's important that if this grant

type has to be used, the authorisation server should

narrow down the scope and the lifetime of the tokens

issued. All tokens (Access, Refresh, and ID),

passwords, secrets, authorisation codes and client

credentials must not be transported in clear text. Any

information in the JSON Web Token must not

include any sensitive information about the client of

the resource owner in plain text. Nothing should be

transmitted over insecure channels or stored in an

unsecured manner.

4. Implementation

One of the many requirements of this study is to

answer the question is the solution secure. Anything

to do with single sign-on or the overall IAM stack

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 996

always circles back to security because without it

you are leaving your endpoint/application open to a

worldwide web where users, data, digital assets, etc

will all become compromised. In today's world, it is

not just about TLS/SSL between endpoints because

at times that is not even safe [14]. Sophisticated

actors have found a way to use SSL to their benefit.,

meaning it is no longer enough to trust that encrypted

data transmission is completely secure since we have

the CIAA principles, so it's important to understand

that when implementing OpenID Connect it's done

correctly using the correct flow for your endpoint

and also using the tokens as they were intended. So

when it comes down to designing a secure IAM

solution it requires careful thought and planning.

OpenID is the fastest, easiest, and most secure way

to sign in to websites [15]. Nothing is unbreakable

however there are no major security flaws with

OIDC, the only flaw that will occur is using this

protocol incorrectly, or not implementing using the

OIDC specification. To avoid man-in-the-middle

attacks, for any request sent to authorisation and

token endpoints, the authorisation server must use

TLS with server authentication. The client must

verify the TLS certificate of the Authorization Server

as specified by the Public Key Infrastructure

Specification and in compliance with its server

identity authentication specifications. If a bearer

token was to become compromised by a hacker it

could lead to them having access to multiple

resources. So these tokens must be shielded from

exposure in the possession and transportation to

avoid misuse by having a comprehensive client

secret. Doing so will allow the client/authorisation

server to know when the token has been tampered

with [16]. Configurations of clients must ensure

tokens are not exposed to unwanted parties during

transit or storage, since they can be used to obtain

access to secure services. TLS must always be used

when making requests with bearer tokens, if not this

exposes the token to multiple attacks if

compromised. Token servers SHOULD issue short-

lived (one hour or less) bearer tokens, particularly

when issuing tokens to clients that run within a web

browser or other environments where information

leakage may occur. Using short-lived bearer tokens

can reduce the impact of them being leaked [17].

URLs (or cookies) should not contain bearer tokens,

instead, HTTP message headers should contain the

tokens. If bearer tokens are passed in page URLs,

attackers might be able to steal them from the history

data, logs, or other unsecured locations and use

replay attacks [17].

The rest of this section goes through some

aspects of the setup of the web application, the

integration with the third-party identity provider

(Okta) using OpenID Connect, test user account

setup, and authentication policy creation. The web

application will be built on a Nodejs server using an

open-source application generator called JHipster.

The application is configured to run over HTTPS on

port 8080, however, an iptables rule on the server

will redirect all 443 traffic to port 8080, with this

rule takes away the requirement to include the port in

the web app URL. The main function of this

application is to have two roles, Admin and standard

users. During the implementation the Okta tenant

will be configured to also have these two groups,

users will then be added to these groups, and post a

successful authentication the group the user is part of

will be added in the id_token. The web application

will then provide the correct level of rights for that

authentication session based on that claim. The

authentication flow can be seen in Figure 11.

Figure 11: End to End authentication flow

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 997

The hosting provider we used was DigitalOcean.

The domain was purchased from namecheap. SSH

keys were created. Apache was installed on Ubuntu.

The main purpose of SSL is to safeguard sensitive

information through the use of encryption when in

transit across the World Wide Web. The web app

was built using JHipster which is a free and open-

source, multi-platform, free to download application

generator used to develop web apps. The

technologies used are based on microservices using

Angular / React and the SpringBoot Framework.

At this point, the application has been installed,

however before it can run the Oauth 2.0 / OpenID

Connect configuration needs to be complete. By

default, JHipster creates a Docker container, and in

that container resides an opensource identity and

access management application called Keycloak. Our

web application is integrated with a third-party

Identity Provider (Okta). As part of single sign-on

for this web application end, users need to have a

credential to perform the first factor (email and

password). For the second-factor authentication, they

need to bind something to their identity. Account

creation/provisioning will be handled in the Okta

tenant, this can be done using self-service

registration (allows any user to register for the app)

or manual provisioning (controlled by the application

administrator). Self-service is disabled. It is

controlled by the Okta tenant. For added security

MFA is used to add an extra layer of security for this

web application. With Okta, it allows multiple types

of MFA for the end-users: Okta Verify, SMS

Authentication, Google Authenticator, Symantec

VIP, on-Prem MFA, RSA SecureID, or Email

Authentication.

5. Evaluation

The purpose of this testing is to demonstrate how

the framework has been implemented serves its

purpose, which is to protect the user's data by strong

authentication mechanisms followed by granular

authorisation using the ID Token. All testing carried

out is done to satisfy the research question. It will

also show the benefit of MFA and how it can easily

protect users' data.

The app runs in development mode so all

events/transactions are printed to the console. This

allows viewing of the authentication tokens, access

tokens, and id tokens. During the configuration of

the web app, OIDC/OAuth authentication was

selected as the authentication mechanism. This

means all local logins that come as standard with this

JHipster build are redundant. During the

implementation section test user account

sso.help21@gmail.com was set up and then assigned

to the Admin Group in the Okta Tenant. This same

account will now be used to login into the

application. After the user has completed the two-

factor authentication sequence the access token and

id token will be printed out to the console allowing

us to view the claims. As this user was added to the

admin group they will have full admin rights in the

web application. The following steps will confirm

the same. Using chrome browser navigate to

https://login-sec-oidc-test.com/. The following was

printed to the console log. Please note the line

highlighted in Figure 12 which indicates the user

access the web application does not have a valid

authentication session. The user is then redirected to

the Okta login form as seen in Figure 13.

Figure 12: Console log output - no valid session

The console log shows the redirect to the OpenID

provider seen. A URL is constructed by the

application, this indicates the start of the

authorisation flow. The end-user then enters their

email address and password as seen in Figure 14.

Okta will verify the user's credentials against their

datastore. Upon a successful first factor

authentication, the end-user will be challenged for

the second factor as seen in Figure 15 . For the

second factor challenge, this specific user tied their

identity using the Google Authenticator app. At this

point, the user has completed the login challenges,

and the application now has the authorisation code

that will obtain the access token . The application

will POST the request to the authorisations server

endpoint with the parameters grant_type which lets

the endpoint know to use the Authorization Code

grant type; Code which is the code that was given in

the redirect and redirect_uri which is the same uri

given when requesting the code. These parameters in

the request will be validated by the token endpoint. If

all checks out, an access token will be generated and

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 998

Figure 13: Okta login Form

Figure 14: First-factor challenge

Figure 15: Second-factor challenge

Figure 16: ID Token issued by the Authorization Server

returned in the reply. Point to note, the authentication

has been a success and the authorisation server will

now issue an id token to the application. This id

token contains the user's attributes, including the

user's ROLE. The granular authorisation should be

performed from the claims in this token and not the

access token.

Inspecting the token it has the user's email

address, location, full name, and groups associated

with them. As you can see in Figure 16, this user has

been assigned to the admin group, meaning they will

have full administration rights to this application.

The authorisation server will now redirect the user

back to the redirect URI that was specified in the

construction of the URL when the authorisation code

flow was initiated and the user has full admin

privileges.

The results of these tests show that when OpenID

Connect, OAuth 2.0 Authorization Code Flow, and

Multi-Factor Authentication is integrated and used in

the correct way users and the endpoint are protected.

In the tests carried out, the exchange of the access

token for the id token can be seen after successful

authentication. Then based on the claims passed to

the web application in the id token the web

application decides as to what type of granular

authorization is to be performed. In this test, it was a

simple admin vs user scenario. In the final test, email

spoofing was performed and successfully captured a

user's credentials. With these credentials now

compromised it allowed the hacker to attempt a login

to the web app, however, because Multi-factor

authentication was in play this protected the user and

their data. When it comes to authentication it's

important to be in the mind-set of something you

know and something you have. That way if

something you know is compromised (password) the

something you have will act as your safety net. And

it’s the same for authorization, when developing a

web application you can't just assume that if the user

passed the authentication process then they are safe

and they should have access. If you think of a real-

world scenario between a consultant, doctor, and

patient who all have access to a system. In this

system patients can log in and view medical records

but what if that patient is waiting for results on a

particular blood test or scan and the consultant and

doctor do not want to allow the patient to see these

records until after the consultation. This is where

granular authorization comes into play because all

three parties can still log in using their credentials

but by using the claims in the id token to control

what level of access the user has/what is presented to

them on screen.

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 999

6. Conclusion

In this paper covered numerous Identity &

Access Management protocols and solutions that are

used within many organizations today but often used

in the incorrect way. When it comes to security for

applications, one will hear the term SSO but what

does that mean. If one picks it apart SSO is for

authentication only and not authorization because it

allows users to log in and have access to whatever is

inside the endpoint. But Identity & Access

Management covers authentication and authorization

so when it comes to designing a web application

instead of just thinking about SSO think about the

whole Identity & Access Management framework

for the application. The reason OpenID Connect,

OAuth 2.0, and Multifactor authentication were

chosen for this project is to showcase the importance

of implementing IAM the correct way. We show that

OpenID Connect is an SSO solution but OAuth 2.0 is

not, however many feel it is because authorization

could also be used for authentication. This goes fully

against the OAuth 2.0 specifications which state

OAuth 2.0 is perfect for conveying authorization

decisions between web applications and REST

endpoints. OAuth 2.0 can be found in a broad range

of implementations, including offering user

authentication mechanisms. And because of that

developers, service providers, IT professionals, and

security professionals have been led to wrongly

believe it is an authentication protocol. In addition to

OAuth 2.0, it is a rich authorization framework with

many flows. For example, in a scenario where a

scheduled job leverages an API that exports/imports

data to a database this is a machine-to-machine

authorization and this type of integration could

leverage the Client Credential Flow. Another

example is a native application. If you decompile a

native application it would clearly show the Client

Secret (cannot securely store the secret) and it may

also use custom URL schemes that log redirects

allowing untrusted applications to receive the

Authorization Code. So again OAuth 2.0 provides a

version of the Authorization Code Flow but it uses

something called Proof Key for Code Exchange

(PKCE). The main focus of this project was

protecting web applications/endpoints/users and that

is why these three protocols were chosen. Building

the web application was done using a free open-

source application generator called JHipster. This

application generator was chosen because not only

does it provide front-end and back-end services but it

also has a built-in authentication (OIDC) and

authorization (OAuth 2.0) module making it very

easy to achieve IAM compliance. initial tests show

the importance of the access token and the id token

when making authorization decisions. In the last test,

the importance of multifactor comes into play where,

even with a compromised account, the sophisticated

actor cannot gain access to the web application. Of

course, as with any security implementation, it must

be done following documented policies and

standards. For OpenID Connect following the

OpenID[.]net specification for the implementation

will ensure the correct implementation methods are

used for the endpoint/web application and as an

added security layer Multi-Factor Authentication will

help safeguard the end-users.

7. References

[1] Wiki, (2020). Identity management, https://en.wikip

edia.org/wiki/Identity_management. (Access Date: 12 Jul

y 2020).

[2] OpenID. Benefits of OpenID. 2020. [Online].

Available: https://openid.net/individuals/. (Access Date:

12 July 2020).

[3] Chen, S. (2012). Signing Me onto Your Accounts

through Facebook and Google. https://ieeexplore.ieee.org/a

bstract/document/6234424. (Access Date: 2 February

2021).

[4] Hardt, (2012). The OAuth 2.0 Authorization Frame

work, https://tools.ietf.org/html/rfc6749#section-10.15. (A

ccess Date: 12 April 2020).

[5] OpenID. (2014). Welcome to OpenID Connect. https:

//openid.net/connect/. (Access Date: 2 February 20 21).

[6] Bhati, K. (2019). Authentication and Authorization to

Secure API’s. https://nl.devoteam.com/en/blog-post/authe

ntication-authorization-secure-apis/. (Access Date: 2 Febru

ary 2021).

[7] O Foundation. (2015). OpenID Foundation. https://op

enid.net/foundation/#:~:text=The%20OpenID%20Foundati

on%20is%20a,developers%2C%20vendors%2C%20and%

20users. (Access Date: 14 September 2020).

[8] Hunt, P. (2020). OAuth 2.0 Threat Model and Security

Considerations. https://datatracker.ietf.org/doc/rfc6819/.

(Access Date: 3 June 2021).

[9] J. Bradley (2020). Web Authorization Protocol. http

s://tools.ietf.org/id/draft-ietf-oauth-security-topics13.txt.

(Access Date: 2 June 2021).

[10] Connect2id. (2020). Standard OAuth 2.0 / OpenID

Connect endpoints. https://connect2id.com/products/server

/docs/api. (Access Date: 2 July 2021).

[11] Auth0. (2020). JWT.IO. https://jwt.io/. (Access Date:

1 July 2021).

[12] OpenID. (2014). OpenID Connect Core. https://open

id.net/specs/openid-connect-core-1_0.html#CodeFlowStep

s. (Access Date: 4 July 2021).

[13] Ping identity. (2020). OAuth 2.0 Developers Guide.

https://www.pingidentity.com/developer/en/resources/oaut

h-2-0-developers-guide.html. (Access Date: 1 July 2021).

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 1000

[14] Gartner. (2020). Radware. https://www.gartner.com/

imagesrv/media-products/pdf/radware/Radware-1-2Y7FR0

I.pdf. (Access Date: 2 August 2021).

[15] OpenID.net, “Benefits of OpenID,” 2020. [Online].

Available: https://openid.net/individuals/. (Access Date: 2

August 2021).

[16] Urban. C. (2019). Formal analysis of Facebook Con

-nect. https://caterinaurban.github.io/pdf/sofsem2011.pdf.

(Access Date: 2 August 2021).

[17] Hardt J. (2012). OAuth 2.0 Bearer Token Usage.

https://tools.ietf.org/html/rfc6750#page-10. (Access Date:

1 September 2021).

[18] OKTA, (2017). Security Considerations. https://ww

w.oauth.com/oauth2-servers/authorization/securityconsider

ations/. (Access Date: 12 September 2020).

[19] Shopper, S. (2008). What is a CSR. https://www.

sslshopper.com/what-is-a-csr-certificate-signing-request.ht

ml. (Access Date: 11 September 2020).

International Journal for Information Security Research (IJISR), Volume 11, Issue 1, 2021

Copyright © 2021, Infonomics Society | DOI: 10.20533/ijisr.2042.4639.2021.0113 1001

