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Abstract 

Mathematics learning outcomes have specific 

cognitive development implications [2], [9]. Key 

contributions in ‘structure sense’ studies build upon a 

theoretical manuscript detailing a conceptualization 

of ‘thinking mathematically’ using symbols (i.e. 

‘symbol sense’) [1], [6], [12], [13].  Likewise, from a 

theoretical basis, this manuscript reports and extends 

an initial conference presentation of the instrument: 

Algebra Concept Inventory to Measure Metric Sense 

(ACIMMS) [14].  This paper includes the complete 

instrument as well as developmental details, 

particularly; (a) a definition of ‘metric sense’ [9], (b) 

specific roles of mini-experts in Second Generation 

Instructional Design (ID2) [11], and, (c) creates a 

mathematics instrument using ‘metric sense’ to 

inventory five subject specific domain knowledge base 

items [5].  Selected applications of the instrument’s 

constructs are illustrated in equations conventionally 

found in trigonometry and statistics courses.  Upper 

classmen from a United States high school form a 

sample for a correlation and means difference study 

between federal accountability exam scores and 

ACIMMS algebra instrument data. Confirmed are 

findings from a bounded literature review [9], that 

concurrent use of all five metric sense 

conceptualizations are not extensively utilized by 

secondary students in manipulating mathematical 

expressions [6]. Despite time discrepancies of up to 

three years between results of ACIMMS instrument 

data and independent federal algebra accountability 

exam scores, a significant positive correlation is 

found.  Correct answers on each instrument question, 

which forms two respective groups of students’ 

independent algebra accountability exam scores, 

reveal a clear need for students’ persistent 

understanding of all five metric sense 

conceptualizations.  Recommendations are made for 

teaching and further mathematics learning 

investigations. 

1. Introduction

This theoretical manuscript presents a definition 

of metric sense using a metric space [12].  

Mathematics learning requires a continual 

examination of conceptual understanding while 

executing each step of procedural approaches to 

problem solving [2].  Recent research has examined 

the effect of using brackets in procedural processes to 

group structures according to an order of operations 

[6].  Other studies compare written forms of 

expressions to examine student comprehension of 

structure (i.e. structure sense) [1], [10]. 

In this paper it is contended that procedural 

processes are concurrent with structure 

comprehension in making sense of mathematics [10], 

[13]. Theoretically, the inherent mathematical 

structure of a metric space will define the algebraic 

structures mathematics students engage when using 

procedures to rearrange groupings of symbols to solve 

problems [12]. Five horizontal integrated algebra 

knowledge base elements are hypothesized as 

concurrently necessary to simplify expressions, solve 

equations, and build skills in mathematics learning 

[2], [5]. The distance function relating elements of a 

metric space (e.g. variable representations among 

symbols in algebra) is used in an analysis to justify 

each integrated algebra knowledge base element.  

Findings include an Algebra Concept Inventory to 

Measure Metric Sense and two examples which 

extend the research constructs to post algebra 

structures (see Tables 3, 4, 2, and Figures 1a, 1b 

respectively).  The instrument is consistent with 

current lines of inquiry in mathematics learning and 

may compliment instrumentation developed in studies 

in Newtonian physics [3], [4]. 

2. Metric Space and Metric Sense

The most familiar metric space used to develop 

elementary algebraic skills is the Euclidean Space [8].  

The Euclidean plane (i.e. Cartesian Plane RxR) is 

used as a representation for learning algebraic 
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concepts where two real number lines intersect at an 

origin.  The representation provides access to 

instruction on two variables x and y.  The following 

definition of a metric space theoretically supports the 

development of instrument design and element 

horizontal integration into a specific mathematics 

domain knowledge base [5], [12]. 

A metric space is a set R with a distance function 

(the metric d) that, for every two points x,y in R, gives 

the distance between them as a nonnegative real 

number d(x,y). A metric space must also satisfy  

1. d(x,y) = 0 if and only if x = y   

2. d(x,y) = d(y,x) and  

3. the triangle inequality d(x,y) + d(y,z) >= 

d(x,z). 

“A Euclidian Space may be viewed as a vector space 

with the usual metric (distance) explored in secondary 

mathematics education.  This focus on mathematical 

conceptual understanding, a refinement of structure 

sense within mathematical thinking, herein termed 

metric sense; is hypothesized to be instrumental in 

building empirical knowledge in” … mathematics 

instruction … “and the assessment of learning 

outcomes” [8], [9].  

 

 

 

 

3. Metric sense as horizontal integrated 

algebra knowledge base elements  
 

A purpose of this paper is to specify algebra 

knowledge base elements impacting future 

knowledge production in mathematics learning.   

Measuring metric sense cognitive skills is inherently 

measuring proficiency in identifying and correctly 

interpreting metric space elements [9], [12].  The 

following delineates five measurable constructs of 

metric sense conceptualization (MS1-MS5) 

throughout each step in an equation and its procedural 

solution (see Table 1). 

1. MS1 - identify all the unary, binary, or other 

operations  

2. MS2 – identify the main operation (MO) of 

an expression within an equation; utilizing 

all the expression, not missing anything  

3. MS3 - correctly execute the inverse 

operation resulting in an equivalent equation 

4. MS4 – identify all positive and negative 

symbols in an expression as either only part 

of a coefficient of a term, or concurrently as 

a coefficient symbol and a binary operation 

(i.e. sum and difference) 

 

 

Table 1.  Algebraic example identifying all metric sense elements in each solution step 

 
+𝑥2 − 4

+10
= +6 

 

 

 

 

MS3 {apply inverse, 

multiply} 

MS2     MO  quotient 

 

MS5 

Quotient of (difference and 10) 

 

(Square and 4) 

 

x 

MS1 - Two binary operations (-, /) 

and one unary operation (square) 

 

MS4 – Three positive symbols as 

coefficients on terms; one negative 

symbol as symbol on 4 having dual 

purpose as binary operation 

difference/subtraction (total 4) 

+𝑥2 − 4 = +60 

 

 

 

MS3 {apply inverse add} 

MS2     MO   difference 

 

MS5 

Difference (Square and 4) 

 

x 

MS1 - One binary operation (-) and 

one unary operation (square) 

 

MS4 – Two positive symbols as 

coefficients on terms; one negative 

symbol as symbol on 4 having dual 

purpose as binary operation 

difference/subtraction (total 3) 

+𝑥2 = +64 

 

 

MS3 {apply inverse√𝑥2 = 

√64} 

 

MS2     MO   square 

 

MS5 

(Square) 

 

x 

MS1 - one unary operation 

 

MS4 – Two positive symbols as 

coefficients on terms; no positive or 

negative symbols having dual 

purpose as binary operations (total 2) 

+𝑥 = +8 *  MS4 – Two positive symbols as 

coefficients on terms; no positive or 

negative symbols having dual 

purpose as binary operations (total 2) 

Note. * Positive result for illustration 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 4104



 

5. MS5 – identify in writing, the hierarchy order of 

operations beginning with the main operation 

(MO), throughout the entire expression, detailing 

all operands of unary and binary operations. 

 

4. A relationship between metric sense 

knowledge elements and a mathematical 

metric space 
 

The hypothesis of this manuscript is: a student 

who has a high level of metric sense in the five 

horizontal integrated algebra knowledge base 

elements has a knowledge base necessary to simplify 

expressions, solve equations, and build knowledge in 

a metric space setting.   

 

5. Theoretical analysis of the hypothesis 
 

Represented here are theoretical justifications for 

the hypothesis [12]. 

MS1, MS4:  A metric space requires, for every 

two points x,y in R, the triangle inequality d(x,y) + 

d(y,z) >= d(x,z) holds.  Therefore, the summation, and 

its inverse binary operation, difference, must be 

identifiable as independent or concurrent uses of the 

+ and – symbols respective of an element’s distance 

from either side of zero on a real number line. 

MS2, MS5:  Novotná and Hoch [12, p. 95] find 

“An important feature of structure sense is the 

substitution principle, which states that if a variable or 

parameter is replaced by a compound term (product or 

sum), or if a compound term is replaced by a 

parameter, the structure remains the same.”  

Therefore, a main operation (MO) of an expression 

within an equation, utilizing all the expression, not 

missing anything; incorporates possible compound 

terms where in a metric space, for every two points x, 

y in R, gives the distance between them, d(x, y). 

MS3:  The relationship between an operation’s 

identity element and inverse elements of a metric 

space are identifiable for every element in the 

continuous set R [8]. 

An extended application of the five measurable 

components of metric sense conceptualization, with 

the same theoretical justifications, can be applied to 

post algebra mathematics learning [12].  An 

application of conceptualizing metric sense in a 

trigonometric equation is provided (see Table 2).  

Although introduced in algebra, it cannot be over 

emphasized that continual conceptualization and 

persistent application of the five horizontal integrated 

algebra knowledge base elements is critical to 

mathematics learning throughout secondary and 

tertiary education.

 

 

 

 

Table 2. Trigonometric example identifying metric sense knowledge base elements 

 
 

+sin(+𝜋 − 𝑥) =  −2 

 

Normally: 

sin(𝜋 − 𝑥) =  −2 

 

 

MS3 {apply inverse sin-1} 

 

MS2     MO  sin function {unary} 

 

MS5 

 

MS1 - One binary operation (-) and 

one unary operation, sin ( ) 

 

MS4 – Three positive/negative 

symbols as coefficients on terms, 

One negative symbol as a symbol on 

x with dual purpose as a binary 

operation difference (total 4) 

 

 

 

Note. sin-1  is the inverse function of the sine function; first solution step provided for illustration 

 

 

An additional application of metric sense and 

structure sense is presented for student learning on the 

proportional minimum sample size n formula from a 

familiar margin of error (E) equation (see Figure 1a 

and 1b).  The classroom presentation episode is a 

successful example of turning theory into practice. 

 

 

 

 

6. A mathematics instrument using 

‘metric sense’ to inventory algebra subject 

specific domain knowledge base elements 
 

Expressions typical in linear and quadratic 

equations are analyzed in ten questions of an Algebra 

Concept Inventory to Measure Metric Sense (see 

Table 3 and 4).  Level appropriate vocabulary is 
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Table 3. Algebra Concept Inventory to Measure Metric Sense p. 1 

 
 

Answer questions 1-5 using the equation below: 
 

 +2(+𝑥 − 4)

+3
+ 5 = 0 

Normally  
2(𝑥 − 4)

3
+ 5 = 0 

 

1. Which is the main operation of the expression on the left side of the equation; 

utilizing all of the left expression, not missing anything, considering the order of 

operations 
A. + symbol before the x B. ÷ division bar 

C. + symbol before the 5 D. - symbol before the 4 

2. Which is correct about the expression on the left side of the equation 
A. four positive symbols on terms; one negative 

symbol also as subtraction (total five) 

B. one positive symbol on terms; one negative 

symbol also as subtraction; three positive 

symbols also as addition (total five) 

C. two positive symbols on terms; one negative 

symbol also as subtraction; two positive 

symbols also as addition (total five) 

D. three positive symbols on terms; one 

negative symbol also as subtraction; one 

positive symbol also as addition (total five) 

3. Which is accurate about the expression on the left side of the equation, 

considering the order of operations 

A.  
 

B.  
 

C.  
 

D.  
 

4. Which is accurate about the expression on the left side of the equation 
A. It has one binary operation B. It has four binary operations 

C. It has five binary operations D. It has no binary operations 

5. What are the steps in solving the equation by reversing the main operation of the 

expression on the left side of the equation; 
A. First subtract each side by 5 followed by 

multiplying by 3 as the next step 

B. First subtract each side by 5 followed by 

adding by 4 as the next step 

C. First subtract each side by 4 followed by 

multiplying by 3 as the next step 

D. First add each side by 5 followed by dividing 

by 4 as the next step 

   

 
Note.  Coefficient symbols are shown and introductory vocabulary used for inventory instrument measurement.  

Table 4. Algebra Concept Inventory to Measure Metric Sense p. 2 
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Answer questions 6-10 using the equation below: 
 

 −6 + √(−2)2 − 4(+3)(−𝑥) = 0 
Normally 

−6 + √(−2)2 − 4(3)(−𝑥) = 0 

 

6. Which is the main operation of the expression on the left side of the equation; 

utilizing all of the left expression, not missing anything, considering the order of 

operations 
A. - symbol before the 4 B. + symbol after the 6 

C. 2 symbol (square) D. √  symbol (square root) 

7. Which is correct about the expression on the left side of the equation 
A. one negative symbol on terms; one positive 

symbol on terms; two positive symbols also as 

addition; two negative symbols also as 

subtraction (total six) 

B. two negative symbols on terms; one positive 

symbol on terms; one positive symbol also as 

addition; two negative symbols also as 

subtraction (total six) 

C. three negative symbols on terms; one positive 

symbol on terms; one positive symbol also as 

addition; one negative symbol also as 

subtraction (total six) 

D. one negative symbol on terms; one positive 

symbol on terms; one positive symbol also as 

addition; three negative symbols also as 

subtraction (total six) 

8. Which is accurate about the expression on the left side of the equation, 

considering the order of operations 

A.  

B.  
 

C.  
 D.  

 

9. What is accurate about the expression on the left side of the equation 
A. It has 6 binary and 1 unary operation B. It has 4 binary and 1 unary operations 

C. It has 1 binary and 4 unary operations D. It has 4 binary and 2 unary operations 

 

10. What are the steps in solving the equation by reversing the main operation of the 

expression on the left side of the equation; 
A. First add each side by 6 followed by squaring 

each side as the next step 

B. First square each side followed by adding 

each side by 6 

C. First add each side by -2 followed by squaring 

each side as the next step 

D. First square each side followed by adding 

each side by 2 

   

 
Note. Coefficient symbols are shown and introductory vocabulary used for inventory instrument measurement. 

 

 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 4107



 

 
 

Figure 1a and 1b.  Metric sense instruction as constructs on confidence intervals for proportions 

 

integrated in the instrument which is conventionally 

familiar to beginning algebra students.  Some latent 

coefficient symbols are present to accentuate 

structure sense knowledge base element 

identification while using the instrument (i.e. MS4, 

see Tables 1- 4).  It is recommended that instructors 

use the instrument customized and adapted to their 

individual needs. Instructors wishing to use the 

instrument to find a significance between data with 

other assessments in algebra may need to determine 

pre and post testing variables according to their 

particular school setting.  Additional delineations 

may need to be specified when reporting on findings 

using the instrument. 

 

7. A sample for a correlation and means 

difference calculation 
 

Upper classmen from a United States high 

school provide sample data for a correlation and 

means difference study between their federal 

accountability algebra exam scores and the 

independent ACIMMS algebra instrument scores.  

Convenience sampling is used, as each student 

within the school has a school administrated federal 

accountability algebra exam score.  Administrative 

permissions also warrant this sampling technique. 
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8. Methodology 
 

Approved by administration, students (n = 49) 

voluntarily participated in the instrument data 

collection, for credit, a few weeks before graduation 

as a normal mathematics activity included in their 

course work study.  The majority of students 

received a federal accountability exam score up to 

three years prior, as a summative assessment at the 

conclusion of an algebra 1 course.  The researcher 

determined that the time laps and participation in 

other mathematics courses allows for instrument 

measurement of retained algebraic metric sense 

understanding (i.e. use of the five algebra base 

elements MS1-MS5).  Some vocabulary information 

was determined essential and was provided 

graphically as an additional page:  

 

Unary Operations 

√  

⬚2 

⬚3 

Binary Operations 

⬚ + ⬚ 

⬚ - ⬚  

⬚ x ⬚ 

⬚ ÷ ⬚ 

 

ACIMMS algebra instrument scores were recorded 

for each student, for each question. The instrument’s 

range is 0-10, one point for each of the 10 multiple 

choice question answered correctly. The State’s 

federal accountability exam ranges for the following 

four categories, Below Basic, Basic, Proficient, and 

Advanced; are respectively, 1200-1438, 1439-1499, 

1500-1545, 1546-1800.  Each student’s exam value 

was recorded.  Student identification labels replaced 

any identifying information collected during the 

study, immediately after being paired. Paired data 

are plotted using a spreadsheet and a Pearson 

correlation coefficient critical value is used to 

determine correlation significance (see Figure 2).  

For each of the ten questions data of the ACIMMS 

instrument, based on correctness, two groups of 

accountability exam scores were created (see Table 

5).  Ten independent two samples mean t-test(s) 

assuming equal variances were calculated. 

 

9. Conclusions 
 

There are specific cognitive skills required in 

representing and explaining structure sense within 

the mathematical construct of a Euclidian Space [8], 

[9].  Students’ skills can be quantified for instruction 

in manipulations of algebraic equations, and for 

formative or summative assessment.  ACIMMS 

instrument scores and psychometrically valid 

federal accountability exam scores are significantly 

correlated, r = .2418, p < .05 (see Figure 2).  

 

 
Figure 2.  Paired data plot 

 

Of the ten ACIMMS questions, only questions 

4, 5, 9, and 10 had student responses greater than 

50% correct (see Table 5).  These responses are 

representative of MS1 and MS3 measurable 

constructs of metric sense conceptualization for 

linear and quadratic expressions.  These are more 

identification tasked MS1 and procedural MS3 in 

students’ interactions with expressions.  The 

questions with student responses less than 50% 

correct are representative of metric sense constructs 

MS2, MS4, and MS5.  These require a more 

comprehensive understanding of entire expressions, 

including symbol location, orders of multiple 

operations, and symbol use comprehension (i.e. 

symbol sense and metric sense). 

 

Table 5. Accountability exam scores 

 
 Correct Incorrect 
ACIMMS n M (SD) n M (SD) 

1 8 1508.50(36.23) 41 1520.02(43.32) 

2 18 1524.11(46.06) 31 1514.68(40.03) 

3 12 1531.25(46.63) 37 1513.89(40.32) 

4* 25 1530.04(46.59) 24 1505.75(33.51) 

5 36 1523.31(44.32) 13 1503.85(32.64) 

6 10 1512.80(37.37) 39 1519.51(43.60) 

7 21 1517.38(42.27) 28 1518.71(42.77) 

8 18 1512.22(38.69) 31 1521.58(44.24) 

9 28 1522.21(34.05) 21 1512.71(51.37) 

10 33 1517.27(40.67) 16 1519.94(46.29) 

 

Note. * significance t(1) = 2.09, p < .05. 

 

Ten, two-samples mean t-test(s) assuming equal 

variances determined that for only half of the 

ACIMMS questions, the group of accountability 

exam scores corresponding to answering the 

question correctly, had a mean greater than the 

group mean representing the question incorrectly 
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answered.  It is notable that four of those correspond 

to linear expressions questions rather than quadratic 

expressions questions.  The low correct to incorrect 

ratio for all questions responses may explain this 

accountability exam score result (see Table 5).  It is 

also notable that the question with the highest 

correct : incorrect ratio is question 5, 36:13.  This is 

representative of students arriving at a procedural 

first step response MS3, but far from a success rate 

potential if they concurrently, persistently utilized 

all five instrument conceptualizations successfully. 

ACIMMS questions 4, 5, and 9 are identified as 

corresponding to MS1 and MS3 measurable 

constructs of metric sense conceptualization for 

linear and quadratic expressions.  Examination 

indicates that these are more identification tasked 

MS1 and procedural MS3 in students’ interactions 

with expressions.  For ACIMMS question number 4 

(i.e. MS1 - identify all the unary, binary, or other 

operations), the mean for the group of accountability 

exam scores where the question was answered 

correctly (M = 1530.04, SD = 46.59) reported 

significantly higher scores than the other group (M 

= 1505.75, SD = 33.51), t(1) = 2.09, p < .05  .  This 

significance is found, and may possibly be 

explained, where student focus is on how many 

binary (+,_-) separations are between elements of 

binary operations, necessary in part, to begin with 

the first procedural step (i.e. question number 5) in 

manipulating a linear expression.  The t-test results, 

like the direct ratio results, suggest that more 

comprehensive understanding and persistent use of 

symbol sense and metric sense is required when 

students interact with expressions. 

 

10. Implications for further research 
 

This manuscript provides the Algebra Concept 

Inventory to Measure Metric Sense (ACIMMS 

quantitative instrument) to measure mathematics 

conceptual understanding using five measurable 

constructs of a metric space. This inventory 

instrument was inspired by reviewing research 

manuscripts using the Force Concept Inventory 

(FCI) instrument [9].  The FCI test use in empirical 

studies has initiated substantial contributions to the 

line of inquiry in physics education [3], [4].  

Instrumentation measuring the five constructs of 

metric sense conceptualization (MS1-MS5) has the 

potential to contribute similarly to the line of inquiry 

in mathematics education. 

It is recommended that similar replication 

correlation studies verify the relationship between 

the variables of ACIMMS results and results 

commonly obtained through United States federal 

accountability exams.  Replicating this study’s two-

samples independent means tests, under various 

initial field conditions, may reveal consistent 

conclusions that students emphasize procedures 

over metric sense comprehension when interacting 

with mathematical expressions.  It is also 

recommended that mixed methods be implored 

along with the instrument where qualitative 

approaches can shed more light on students’ use of 

ACIMMS metric sense constructs. 

Included in mathematics learning mixed 

method studies, the instrument may provide 

evidence of relationships across data sources or 

research design approaches.  It is also recommended 

the instrument be used with the FCI instrument to 

measure scientific reasoning ability; adding some 

clarity to unexplained negative correlation findings 

between specific physics learner sample subgroups 

[3]. 

Finally, it is recommended, and cannot be 

understated in the authors opinion, that instruction 

toward comprehension of MS1 through MS5 be 

concurrent and persistent in a comprehensive way 

until students can correctly generate tree 

illustrations as an expected outcome with extremely 

high success rates (see question numbers 3 and 8 and 

Figure 1b).  It may be necessary to continue this 

practice throughout secondary and tertiary education 

for some mathematics students to routinely inspect 

expressions by thinking mathematically [13]. 
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