
Development of Software for Simulation Learning Utilizing the Features of

Java and Processing 4

Toshiaki Yokoi

Tokyo City University, Japan

Abstract

This paper describes various original simulation

programs developed for a "Computer Simulation"

class. Java and Processing 4 were chosen for the

development of the simulation programs because of

their excellent graphical user interface and

visualization capabilities. I developed application

programs with the same functionality using Java and

Processing 4, and compared their development

manhours, amount of code, and time required for

development. The results showed that Processing 4's

capabilities exceeded my expectations. For the

modeling of physical simulations, the "Fisica" library

for Processing 4 proved to be more capable than

expected. With “Fisica”, I was able to create complex

physical models in a small number of lines of program

code that were easy to understand. Next, I took up the

"Brachistochrone problem," one of the famous

variational problems, and compared the theoretical

solution, the numerically approximate solution using

piecewise functions, and the solution using "Fisica”.

As a result, the numerical approximate solution using

piecewise functions showed a high accuracy that was

almost identical to the theoretical solution. On the

other hand, the "Fisica" solution, although less

accurate, is closer to the actual behavior and is more

interactive, making it suitable for introductory

learning. Finally, the "Sheepdog Project" was

discussed as a practical project assignment for a

constructivist approach to animal behavior. By

designing the thinking of a sheepdog to drive a flock

of sheep into a sheep pen in a reliable and short time,

I was able to confirm the students' interest and

engagement with the task.

Keywords: Fisica, Java, Processing 4, Visual illusion

1. Introduction

The course “Computer Simulation” introduces

concepts of analytic modeling and computer

simulation, using projects drawn from

multidisciplinary areas of computational engineering

science [1]. Models progress sequentially through

problem statement, mathematical modeling, computer

modeling, qualitative and quantitative property,

summarization for decision makers (see Figure 1).

Figure 1. Graphical syllabus of the course

“Computer Simulation” at Tokyo City University

2. Utilizing Java and Processing in

Education

2.1. Early adoption of Java for education

In the first curriculum of our former department

“the department of environment and information”

established 1997 at the Yokohama campus, we chose

the Java for the programing language in education

since it is appropriate for the Internet society. Also,

the graphical user interface and multimedia functions

are very attractive in education to stimulate student

motivation to learn.

2.2. Features of Processing 4

The Processing 4 [2] is a Java-based language

which provides easy programming development

environment with wide variety of libraries. Overview

of its features is as follows:

• Simple development screen, simple basic program

structure (see Figure 2).

• Plenty of libraries are available (Open CV, Fisica,

etc. (see Table 1).

• Java integration is available because it is written

in Java.

This feature makes the Processing application

program development easier for the people whose

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1158

primary occupation is not programming (artists,

architects, teachers, composers, data scientists, etc.).

Furthermore, there are plug-ins for NetBeans IDE and

IntelliJ IDE to provide useful and real-time assist for

Processing 4 program development.

Figure 2. Fundamental program flow in Processing 4

Table 1. Primary function categories for Processing

3. Comparison of Java and Processing 4

 Features by Example

3.1 Visual illusion program development

In the visual illusion, we take the Münsterberg

illusion as one example of a basic, interactive

program. The Münsterberg illusion was introduced by

the physician and psychologist Munsterberg in 1897.

When squares of white and black, etc., are shifted to

each other above and below a straight line, the straight

line at the boundary of the squares appears to tilt.

Interactivity was incorporated by using the mouse

event function to shift the horizontal position of the

entire row of squares by dragging the mouse over the

row of squares. Figure 3 shows the screen in

Processing 4. To compare the program volume, I

compared the number of program lines after

reformatting on the NetBeans IDE and the Processing

4 IDE, with all comment lines removed. The Java

program had 113 lines, while the Processing 4

program had 79 lines, indicating that the exact same

functionality can be described more concisely in

Processing 4.

Figure 3. Munsterberg visual illusion by Processing 4

3.2. Hooked on Java examples [3]

3.2.1. “Neon sign” example. This example consists

of a simple program structure that switches images at

random times between the image of a glowing Neon

tube and the image of a tuned-off Neon tube to

represent a blinking neon sign (see Figure 4).

Figure 4. "Neon Sign" example

The length of the source code was 52 lines in the Java

version, but the length of rewritten code in Processing

4 was 42 lines. The time required for porting from

Java to Processing was about 30 minutes.

3.2.2. “Electric circuit” example. This example is to

learn the relationship between current, voltage, and

resistance. When the appropriate battery and resistor

are selected and the switch is turned on, the light bulb

lights up; if the current is too high, the bulb breaks and

makes a noise; if the current is too low, the bulb does

not light up (see Figure 5). The length of the source

code was 613 lines in the Java version, but the

rewritten code in Processing was 466 lines.

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1159

Figure 5. Electrical Circuit Example

The time required for porting from Java to Processing

was about 2 hours.

4. Comparison in Physical Simulation

4.1. "Fisica", a physics library for Processing

 4 [4]

“Fisica” physics library for processing is wrapper

for JBox2D [5], a 2D physics engine. It is available on

Processing as one of contributed libraries. “Fisica”

enables us to create not only realistic simulation

model but ideal apparatus model without friction and

air resistance, etc. The primary parts are shown in

Table 2. The “FCompound” can combine plural parts

into an object to create complex shape objects.

Additionally, “FJoint” makes rotatable joint among

plural objects.

Table 2. Primary parts of physics library "Fisica" for

Processing 4

The procedure for using “Fisica” is very simple.

Firstly, we initialize “Fisica” settings and create an

instance of “FWorld” which represents the virtual

world in the setup method. Secondly, we set the

presence or absence of walls on the four sides of the

window. Then we create the objects to appear and set

their physical properties and visual properties (color,

image, transparency, etc.). Finally, we add them to the

virtual world. The physical state (position, velocity,

acceleration, etc.) can be obtained from each object

during execution.

4.2. “Cannon” in “Hooked on Java”

To evaluate the functionality and performance of

“Fisica”, I use a simulation program for Cannonball

ballistics that appears in the first book on Java,

"Hooked on Java" (see Figure 6). This program allows

the user to adjust the firing angle, initial velocity,

gravity value, and air resistance using GUI. The

physical calculations are performed sequentially

using formulas derived from the equations of motion.

For comparison, the original Java version of the

program was rewritten in Processing (see Figure 6),

and a version using the “Fisica” for Processing (see

Figure 7) was created. The time required to create the

programs and the differences in functionality among

them are summarized in Table 3.

Figure 6. "Cannon" example in Java

Figure 7. "Cannon" in Processing 4

(no use of "Fisica" library)

Figure 8. "Cannon" in Processing 4 using

"Fisica" library

Table 3. Comparison on program development task

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1160

In the original Java version program, the

parameter settings are changed in a separate window,

while Processing programs use external GUI library

“ControlP5” for slide-bar, check-box, etc. Since there

is no difference in the physics of these three models,

there is no difference in the ballistics results, and the

animation of the image and the playback of the sound

are the same when the target is hit. To evaluate the

amount of work involved in rewriting a Java program

into Processing and using "Fisica," I first selected

students with intermediate Java language skills. After

teaching the students how to use the Processing

language, I explained the structure of the original Java

version of the "Cannon" program. Next, I asked the

students to rewrite the Java program into Processing

and create a version using "Fisica." Then I evaluated

the degree of difficulty of the work. The results are

shown in Table 3. The results show that the time

required to create a simulation model with "Fisica"

was 80% of the time required in program without

using "Fisica." Also, the size of source code was 76%

of the case without using "Fisica."

4.3 Utilization of “Fisica” to education

The usefulness of "Fisica" for physical simulations

was confirmed in section 4.2. In this section, we

describe a concrete example of creating a learning

model.

4.3.1. Weighting Scale Simulation. Figure 9 shows a

simple balance created using "Fisica". The weights in

Figure 9. Weighting Scale model

yellow are set to make contact with the left and right

plates, but not with the strings suspending the plates

or the semi-circular part in the center, so that the

learner will not be disturbed when placing the weights

on the plates. The semi-circular parts have weights

and are designed to be balanced by the difference in

weight be-tween the left and right sides in proportion

to the angle of inclination. This model can be run on a

tablet, smart phone, or personal computer, and we

believe it can be used in online learning and in home

study preparation and review. If you wish to create an

upper-dish balance, you can easily do so by setting the

dish and support rod to non-rotatable.

4.3.2. Curling Simulation. This example is a

simulation of a curling competition. The subject is a

reproduction of the third-place game (Japan vs. Great

Britain) in the women's curling competition at the

2018 Winter Olympics in Pyeongchang. The final

throw by Great Britain resulted in Japan scoring and

winning (see Figure 10 and Figure 11). In the curling

competition, which is also called "chess on ice," I

thought that it could be used as a teaching material for

strategy and tactics, not only for competitors but also

for enthusiasts to consider. I believe that it will be

useful for groups of people to enjoy learning about

other tactics options.

Figure 10. Curling model using Processing 4

(before the last throw)

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1161

Figure 11. Curling stone allocation after the last

throw for figure 10

5. Variational Problem Simulation

This example is the Brachistochrone problem,

which is one of the variational problems that cannot

solved without using variation method [6]. We will

compare the results of a theoretical solution, a

numerical solution using the piecewise function

approximation, and a solution using a simple model

utilizing "Fisica".

5.1. About Brachistochrone problem

The problem, presented by Johann Bernoulli in

1696, is to find "a curve connecting A and B such that,

given two points A and B not on the same vertical line,

a single mass point slips from A to B in the shortest

time" (Figure 12).

 (1)

Figure 12. Brachistochrone problem

The time T is expressed in the form of Equation (1),

and the problem is to find a function y(x) such that T

is minimized.

5.2. Theoretical solution

The theoretical solution of the function y(x) such

that the value of equation (1) is minimized is a cycloid

curve, as derived by Johann Bernoulli, Jacob

Bernoulli, Newton, de l'Hospital and others (equations

(2) and (3), Figure 13).

 (2)

 (3)

Figure 13. Theoretical solution curve (cycloid) for

Brachistochrone problem

5.3. Numerical solution by Java using

 piecewise function approximation model

In this section, we present a method for

representing an unknown curve in a piecewise

function model [7], where the x-axis direction is

equally divided into n parts and only the

corresponding y-axis values are variables (Figure 14).

This approach allows the variational problem to be

transformed into an extreme value problem for plural

variable functions. The method based on piecewise

function approximation also allows visualization of

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1162

the optimization process (Figure 15). Figure 16 shows

a graph comparing the approximate solution by

piecewise functions with the theoretical solution by

the variational method: the theoretical value of the

shortest time required is 0.709251529 [s] when the

coordinates of point A are (0,0) and those of point B

are (π/2, 1.0), and the time by piecewise function

approximation is 0.710748133 [s]. The error of the

approximate solution with respect to the theoretical

solution is +0.21%.

Figure 14. Piecewise function approximation model

Figure 15. Solution curve transition

Figure 16. Result comparison between theoretical

and piecewise function approximation

5.4. Processing solution using “Fisica” library

Finally, I present an application of the physics

calculation library "Fisica" for Processing 4. As

shown in Figure 17, 18 and 19, I created a model that

approximates a straight line, a convex curve, and a

cycloid curve with a polygonal line. In each case, a

small quality point was prepared, the fixation was

released by a key operation to start the fall, and the

passage time of the specified interval was measured

by the program. Note that in some cases, contact with

the slope could not be detected at the time of iteration

calculation if the fold line was set too finely, so a

coarse fold line was used for this approximation.

Figure 17. Fisica, Linear slope model

Figure 18. Fisica, Convex curve model

Figure 19. Fisica, Cycloid model

Table 4. Elapsed-time comparison

6. Constructivist Approach to Animal

Behavior

Finally, the "Sheepdog Project" is discussed as a

practical project assignment for a constructivist

approach to animal behavior. To motivate students

with advanced programming skills, I have developed

an animal behavior simulator [8] [9]. In this paper, I

introduce the simulator, named "Sheep farming," and

present an example of its implementation as a project

assignment. The simulator reproduces the behavior of

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1163

a flock of sheep according to the Boid theory proposed

by Craig Reynolds [10] [11]. Through the assignment,

students are to programmatically represent the

behavior patterns of the dog in the simulator by means

of a Java program, and to guide the flock of sheep and

drive them into the sheep pen in a reliable and short

time. Boid theory has been used to automatically

generate realistic behaviors of many virtual animals in

movies (e.g., the movements of a flock of bats in the

movie "Batman Returns" [12]).

6.1. Overview of sheep farming simulation

 platform

Figure 20 shows the startup screen of a sheep

farming simulator created in Java. The main field is a

pasture with sheep and dogs running around. The top

panel has a run button, a speed control slide, and

input/output file names. the amount of Java code is

about 2600 steps. The class structure of the simulator

is shown in Figure 21. The main class is "Meadow,"

which manages the virtual world; instances of

"Meadow" ask all sheep and dogs to perform the

following behaviors, subject to predefined limits

Sheep herding behavior is implemented in the class

"Sheep" so that instances of "Sheep" tend to flock and

avoid the vicinity of dogs.

Figure 20. Platform for "Sheep Farming" Project

Figure 21. Class network for "Sheep Farming"

platform

Figure 22. "Think" design of sheepdog by students

 The student modifies the dog's behavior by way of
intelligence implemented in the class "Dog."
However, all the students can do after the start of the
program is to monitor the progress.

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1164

6.2. The Evaluation value for good behavior

The goal of the project task is to drive all sheep

grazing on the grassland into the sheds in a short time,

with as few sheepdogs as possible (no more than 5),

and in a reliable manner. Therefore, it is required to

design "dog behavior" such that the following indices

are minimized. Note that the success rate is calculated

from the results of at least 20 consecutive runs,

starting with a random arrangement.

Evaluation value = (Number of dogs) x (Maximum

steps required for successful cornering) ÷ (Success

rate)

When a dog cannot easily be driven in a certain step,

a mechanism to detect this and start over should be

incorporated.

6.3. Result of Students’ Struggle

The simulator has been running for 18 years, and

in each year the shape and location of the sheep pen

has been changed, so the students have worked with a

variety of approaches that you would never guess at

the final presentation. Many examples were based on

tactics to evaluate the size of the sheep herd and the

location of the center, such as setting up a dog in the

role of slowly moving toward the sheep herd without

disrupting it (see Figure 23). The resultant evaluation

value distribution for all participants is summarized in

Figure 24.

Figure 23. Successful collaborative behavior strategy

example

The feedback after all the lectures confirmed that

most of the students enjoyed this simulator and

learned both object-oriented methodology and

simulation techniques, even though they struggled to

solve problems.

Figure 24. Evaluation value frequency distribution of

the "Sheep Farming" project

7. Conclusion

In this paper, I described various original

simulation programs developed for teaching in the

course “Computer Simulation.” From the comparison

on the development effort, amount of code, and

development time, the result revealed that the ability

of the Processing exceeded all expectations. In the

physical simulation modelling, the “Fisica” library for

Processing enabled us to create complex physical

models in a small number of program lines with easy-

to-understand codes. The “Brachistochrone problem”

was discussed as one of the most famous variational

problems. As a result, the numerical solution using

piecewise function showed high accuracy that is

almost consistent with the theoretical solution, but it

is more attractive as a method that can take realistic

phenomena such as air resistance into account. By

designing the thinking of a sheepdog to drive a flock

of sheep into a sheep pen in a reliable and short time,

I was able to confirm the students' interest and

engagement with the task.

8. References

[1] Websrv.TCU. (2023). Syllabus of Computer Simulation.

https://websrv.tcu.ac.jp/tcu_web_v3/slbssbdr.do?value(risy

unen)=2023&value(semekikn)=1&value(kougicd)=yab723

201&value(crclumcd)=y217002 (Access Date: 5 September

2023).

[2] Processing. (n.d.). https://processing.org/ (Access Date:

28 August 2022).

[3] Van Hoff, A., Shaio, S., and Starbuck, O. (1995).

Hooked on Java - Creating Hot Web Sites with Java

Applets, Addison-Wesley.

[4] Fisica. (n.d.). http://www.ricardmarxer.com/fisica/ (Acc

-ess Date: 28 August 2022).

[5] JBox2D. (n.d.). http://www.jbox2d.org/ (Access Date: 5

September 2023).

[6] Brachistochrone problem. (n.d.). https://mathworld.wol

fram.com/BrachistochroneProblem.html, (Access Date: 28

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1165

August 2022).

[7] Yokoi, T. (2010), Study on the Brachistochrone problem

and its extended problem by use of computer algebra and

numerical calculation, The 29th Annual Conference of the

Japan Society for Simulation Engineering.

[8] Yokoi, T. (2003). Construction of Educational

Environment for Ecological Simulation utilizing Java,

Journal of Information Media Center, Faculty of

Environmental and Information Studies, Musashi Institute

of Technology, Vol.4, pp.62-66.

[9] Yokoi, T. (2015). Development of a Computer

Simulation Platform for Learning Constructive Approach of

Animal Behaviors, the 34th JSST Annual Conference

(JSST2015).

[10] Reynolds, C. (n.d.). Simulated Boid flock avoiding

cylindrical obstacles, http://www.red3d.com/cwr/ (Access

Date: 5 September 2023).

[11] Davison, A. (2005). Killer Game Programming in Java.

O'Reilly. pp.592-613, Flocking Boids.

[12] Batman Returns. (n.d.). https://www.youtube.com/wat

ch?v=eIo_S0aHyfI (Access Date: 5 September 2023).

International Journal of Intelligent Computing Research (IJICR), Volume 14, Issue 1, 2023

Copyright © 2023, Infonomics Society | DOI: 10.20533/ijicr.2042.4655.2023.0142 1166

