














Figure 12. Combined force plot of SHAP’s explanations at 250 test points for the classifier, ordered by similarity

and using overlap allows for customization of the dif-
ficulty of a generated classification problem. In partic-
ular, our simple definition and manipulation of overlap
for polygonal clustering problems allows us to demon-
strate surprising behavior with LIME. Although we
have only presented a definition for polygonal clusters
in two dimensions, the definition generalizes easily to
other polytopes and a more refined computational ap-
proach may allow us to create more multidimensional
data sets with which we can continue to use in probing
explainers. In addition, these methods could be used to
with classification methods including polygonal mod-
elling [1] or dimensionality reduction.

Appendix A. Implementation and the
MakeOverlap Algorithm

Algorithm 1 and Algorithm 2 contain the pseu-
docode for our method of manipulating the overlap
of a polygonal clustering problem. Note that the cur-
rent implementation supports additional features not
described here. The data generation methods described
in this paper and code for this work can be found
at github.com/he-jesse/polydata. Interface design was
based in part on the datasets module of the sci-kit learn
project [4] and the implementation uses a number of
well-known Python libraries [5, 7, 9].
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Algorithm 1: MakeOverlap
Data: A point set X , a polygon set P , a

function f : X → P , a range (om, oM )
of overlap values

Result: A point set X ′ and polygon set P ′ such
that om < overlap < oM

begin
X ′ ← X P ′ ← P sm ← −1
sM ← 1
s← (sm + sM )/2
while om >overlap(X ′, P ′) or
overlap(X ′, P ′)> oM do

if overlap(X ′, P ′) < om then
sM ← s

end
else if overlap(X ′, P ′) > oM then

/* ε is a small
threshold */

if sM − sm < ε then
sM ← sM + 1

end
sm = s

end
s← (sm + sM )/2
for x ∈ X ′ do

x← x+ s · f(x).centroid())
end
for p ∈ P ′ do

p← p+ s · p.centroid()
end

end
return X’, P’

end

github.com/he-jesse/polydata


Algorithm 2: overlap
Data: A point set X , a polygon set P
Result: The proportion c of overlap
begin

Y ← ∅
for {p1, p2} ∈ P (2) do

for x ∈ X do
if p1.contains(x) and p2.contains(x)
then

Y ← Y ∪ {x}
end

end
end
return |Y |/|X|

end
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