
A Proactive Approach for Detecting Ransomware based on Hidden

Markov Model (HMM)

Mohammed A. Saleh

Computer Science Department, College of Sciences and Arts in Ar Rass
Qassim University, Kingdom of Saudi Arabia (KSA)

Abstract

A ransomware is the most hazardous kind of

computer malware that causes a huge devastation to

the computer systems, so that detecting it is highly

required at the moment. Truthfully, several prior

researchers addressed Markov Model and its

variants, like Hidden Markov Model, to detect a

malware, but none of them addressed the detection of

ransomware through Assembly language

instructions. In this paper, a new proactive approach

for detecting ransomware based on Hidden Markov

Model (HMM) is proposed in order to detect and

classify ransomware. In addition, new datasets that

comprises of various benign and ransomware are

generated and collected. The proposed approach

utilized Hidden Markov Model (HMM) for analyzing

the generated and collected datasets from benign

and ransomware samples, and it detected and

classified all samples correctly with 73% accurate

testing samples emissions sequence.

1. Introduction

In recent times, ransomware attacks form the

extremely active and widely spread waves of

malware attacks [1-2]. Ransomware is a kind of

malware, which is maliciously attacks the victim and

encrypts his digital objects, like files and folders, and

enforces and extorts the victim to pay a ransom, such

as a money or bitcoins, in order to decrypt his digital

objects, and therefore; the victim gets his files and

folders back [3-5]. Although a ransomware is one

type of the malware, it differs than other types of

malware in many features, such as the huge amount

of digital objects, files and folders, processing for

encrypting them and wiping the original copies

completely, and eventually, it orders a ransom to the

victim. Indeed, a ransomware constitutes an extreme

havoc to computers systems, hence; it should be

detected and classified preciously in order to avoid

its negative effects [6-7]. In reality, a ransomware

infects victims through a bug, like zero-days

vulnerabilities, or social engineering tactics [8-10].

In this paper, a new proactive approach for

detecting ransomware based on Hidden Markov

Model (HMM) is proposed to tackle ransomware in

order to detect and classify them properly [11]. The

proposed approach is a proactive, since it is crucial

to classify the sample before the execution under a

computer system. In case the approach detects and

classifies it as a ransomware, it blocks it immediacy,

or otherwise allows it to execute [12]. Besides that,

the approach utilizes reinforcement of machine

learning, namely Hidden Markov Model (HMM), to

train and test the generated and collected datasets

[13-15].

This research paper is organized as follows:

section 1 presents introduction. Sections 2 discusses

the literature review, which involves definitions and

theory of Hidden Markov Model (HMM), and

previous related works. Section 3 demonstrates

generating and collecting training and testing

datasets. Section 4 explains a proactive approach for

detecting ransomware based on Hidden Markov

Model (HMM). Section 5 presents the empirical

results and discusses their analyses accordingly.

Finally, section 6 presents the conclusion and future

work.

2. Literature review

2.1. Hidden Markov Model (HMM)

A Markov Model is a stochastic process that

describes the probabilities of sequences of random

variables and states [11][14]. It makes very strong

assumption that when predicting the future, it only

depends on the present, and the past does not matter

at all, as labelled in the next equation 1.

𝑃(𝑆𝑖𝑘 | 𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑘−1) = 𝑃(𝑆𝑖𝑘 | 𝑆𝑖𝑘−1) (1)

where {S1, S2, …, SN} are a set of states. In many

cases, the variables and states (classes) that we are

interested in are not observable directly, which are

hidden, and therefore; Hidden Markov Model is

used, since it used to describe the both: observable

and hidden variables and states (classes). According

to [16-17] the Hidden Markov models is

characterized by three essential problems:

 Problem 1 (Evaluation/Likelihood): aims to

determine the evaluation (likelihood) based on the

following equations: equation 2, equation 3, and

equation 4.

P(O|λ) = ∑ αT(i)N
i=1 (2)

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1004

αt(j) = ∑ αt−1(i)N
i=1 𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) (3)

α1(j) = 𝜋𝑗𝑏𝑗(𝑜1) (4)

 Problem 2 (Decoding): seeks to discover the

best hidden state sequence, and it uses the

succeeding equations: equation 5, equation 6, and

equation 7.

Best Score P ∗= max
𝑖=1

𝑁 vT(i) (5)

vt(j) = max
𝑖=1

𝑁 vt−1(i)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡) (6)

v1(j) = 𝜋𝑗𝑏𝑗(𝑜1) (7)

 Problem 3 (Learning): trains HMM

parameters by calculating the following equations:

equation 8, equation 9, and equation 10.

P(O|λ) = ∑ πj
N
i=1 bj(𝑜1) β1(𝑗) (8)

βt(𝑗) = ∑ 𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)N
i=1 βt+1(𝑗) (9)

βT(𝑖) = 1 (10)

where: λ: HMM Model, O: Observation Sequence,

πi: Initial Probability Distribution, αt(j): Forward

Path Probability, αt-1(j): Previous Forward Path

Probability, aij: Transition Probability Matrix, bj(ot):

Observation Likelihoods, vt-1: Previous Viterbi Path

Probability, βT(j): Backward Probability.

A research done by [13] proposed a classifier

based on Hidden Markov Model (HMM) in order to

identify the family that a virus belongs to. The

research covered Viruses, but not ransomware.

Another research conducted by [18] examined

Hidden Markov Model (HMM) for four different

compilers, hand-written assembly code, three virus

construction kits, and a metamorphic virus to state

similarities and dissimilarities in the hidden states of

the HMM. As well, it developed the dueling HMM

Strategy for the creation of improved virus detection

tools based on HMMs. The paper covered three virus

construction kits and a metamorphic virus, but did

cover ransomware. A different research

accomplished by [19] applied Hidden Markov Model

(HMM) to differentiate between a cyber-security

attack and no attack. It breaks the data into three

clusters using Fuzzy K mean (FKM), after it that

labels a small data manually (Analyst Intuition), and

lastly it uses HMM state-based approach. The study

tackled merely network attacks. A research prepared

by [12] created a HMM-based models for each

malware family based on its sequence of system

calls. The research treated almost all types of

malware, except ransomwares. Another relevant

research [20] compared API call sequences and

opcode sequences using the HMM learning model in

order to detect malware. The paper did not study any

ransomware sample. A related research work [21]

proposed a novel malware classification scheme that

is based on Hidden Markov Models (HMMs) and

discriminative classifiers. The proposed scheme

takes the sequences of system calls that are generated

by malware during execution as observation

sequences to train the HMMs. The scheme was not

examined and tested towards any ransomware

sample. Two similar researches [14][22] introduced a

new approach based on machine learning methods

with n-gram model for detection malwares. It used

Markov blanket method as feature selection

technique, reduced size of features. The introduced

new approach was not examined and tested against

any ransomware sample. A research established by

[23] presented a classification technique based on

Hidden Markov Model (HMM) in order to classify

computer viruses. It tested the presented technique

towards used various virus construction tools, and

none of them generate ransomware.

3. Generating and collecting training and

testing datasets

In this paper, datasets are generated and collected

from a combination of benign and ransomware

samples; 23 benign samples and 22 ransomware

samples. The research collected 23 benign samples

randomly from a fresh 32-bit and 64-bits Windows

operating systems. In the meanwhile, it collected 22

ransomware samples from online malware

repositories like [24] and [25]. Subsequently, the

whole samples, which involves benign and

ransomware samples, are investigated and analyzed

in terms of Assembly language instructions in order

to explore the sharable Assembly language

instructions among the entire samples. The most

common sharable Assembly language instructions

among the complete samples as discovered by the

research are 59 instructions, as follows: mov lea

xchg lods pop push call ret leave hlt int add sub div

mul inc dec or and xor shr shl test cmp jo jno js jns je

jz jne jnz jb jnae jc jnb jae jnc jbe jna ja jnbe jl jnge

jge jnl jle jng jg jnle jp jpe jnp jpo jcxz jecxz jmp

loop nop.

Afterward, these discovered 59 Assembly

language instructions are grouped and clustered

according to the type of instruction operation, which

includes 5 different operation types, namely Data

Processing Instructions (Opcodes), Process

Instructions (Opcodes), Arithmetic Instructions

(Opcodes), Logic Instructions (Opcodes), and

Control Flow Instructions (Opcodes). The 59

Assembly language instructions are grouped and

2.2. Previous related works

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1005

clustered based on its equivalent operation type as

the following: 6 Data Processing Instructions

(Opcodes) involve mov lea xchg lods pop push, 5

Process Instructions (Opcodes) include call ret leave

hlt int, 5 Arithmetic Instructions (Opcodes) contain

add sub div mul inc dec, 6 Logic Instructions

(Opcodes) encompass or and xor shr shl test, and 36

Control Flow Instructions (Opcodes) comprise cmp

jo jno js jns je jz jne jnz jb jnae jc jnb jae jnc jbe jna

ja jnbe jl jnge jge jnl jle jng jg jnle jp jpe jnp jpo jcxz

jecxz jmp loop nop.

The benign and ransomware samples, executable

Windows software, are converted to Assembly

language instructions (Opcodes), and then

occurrences of the Opcodes are counted according to

the operation types that are listed above. Table 1 and

Table 2, as shown in see Appendix 1 and Appendix

2, present the overall generated and collected

datasets from benign and ransomware samples,

respectively.

4. A proactive approach for detecting

ransomware based on Hidden Markov

Model (HMM)

Practically, the proposed proactive approach

trains Hidden Markov Model (HMM) throughout

Problem 3, Problem 1, and Problem 2 of the HMM

model using the benign and ransomware training

datasets, which are presented in Table 3 and Table 4,

in order to identify benign profile and ransomware

profile. The benefit of these profiles is that they will

be used as benchmarks for classifying testing dataset

later on. The overall datasets, which are shown in

Table 1 and Table 2, are fragmented randomly into

training dataset and testing dataset based on 80% for

training dataset and 20% for testing dataset. The

following Table 3 displays the training dataset from

benign samples, while Table 4 presents the training

dataset from ransomware samples. Table 5 shows the

testing dataset from benign and ransomware samples.

The training and testing processes of Hidden Markov

Model (HMM) are demonstrated in Figure 1 and

Figure 2, correspondingly.

Table 3. Training dataset from benign samples
No Benign

Software/Program

Data

Processing

Opcodes

Process

Opcodes

Arithmetic

Opcodes

Logic

Opcodes

Control

Flow

Opcodes

Total

1 ComputerDefaults.exe 2217 906 3894 784 1801 9602

2 DisplaySwitch.exe 27806 9648 59453 8947 24779 130633

3 Magnify.exe 59064 15748 42508 22518 31588 171426

4 Narrator.exe 72352 4144 202347 47781 69287 395911

5 calc.exe 16631 3391 7405 5010 4079 36516

6 clipbrd.exe 11993 3670 8097 4608 6315 34683

7 cmd.exe 20227 4498 13926 6514 17038 62203

8 dvdplay.exe 428 311 1028 291 506 2564

9 freecell.exe 5632 1195 6428 2645 2750 18650

10 klist.exe 3034 1148 2264 1150 2059 9655

11 label.exe 1250 468 1050 435 806 4009

12 mstsc.exe 79785 29979 85167 29352 46704 270987

13 notepad.exe 15627 3503 10828 6927 11635 48520

14 ntprint.exe 4208 1060 3692 2001 3030 13991

15 osk.exe 41958 17077 77010 12778 24615 173438

16 syskey.exe 2028 1021 2316 1101 1480 7946

17 taskmgr.exe 15092 4456 14411 5737 7730 47426

18 winhlp32.exe 517 281 911 353 463 2525

19 write.exe 357 264 821 315 555 2312

Total 380206 102768 543556 159247 257220 1442997

Ratio 0.2635 0.0712 0.3767 0.1104 0.1783 1.0000

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1006

Table 4. Training dataset from ransomware samples
No Ransomware Data

Processing

Opcodes

Process

Opcodes

Arithmetic

Opcodes

Logic

Opcodes

Control

Flow

Opcodes

Total

1 cerber.exe 27087 5423 24903 16281 155477 229171

2 cryptowall.exe 21993 1505 50955 13102 16373 103928

3 locky.exe 15425 5158 16462 10435 12260 59740

4 mamba.exe 233132 53856 232065 154467 133771 807291

5 matsnu.exe 9755 2653 13174 4838 5824 36244

6 petrwrap 1.exe 42976 8020 21662 19668 22007 114333

7 petrwrap 2.exe 60185 8278 103806 34585 41059 247913

8 petrwrap.exe 42976 8020 21662 19668 22007 114333

9 petya 1.exe 96530 23008 54206 35338 45482 254564

10 petya.exe 96530 23008 54206 35338 42333 251415

11 radaman_UPX.ViR.exe 0 0 0 1 0 1

12 satana.exe 8538 443 9593 3906 4516 26996

13 teslacrypt 1.exe 26309 5063 21494 10583 13831 77280

14 teslacrypt 2.exe 40067 9083 15219 14111 18316 96796

15 vipasana 1.exe 55799 10582 25264 26035 22068 139748

16 vipasana 3.exe 51241 9714 22437 22000 19819 125211

17 wannacry.exe 393909 68355 205262 179467 211577 1058570

Total 1516765 292154 1059744 734662 946823 4550148

Ratio 0.3333 0.0642 0.2329 0.1615 0.2081 1.0000

Table 5. Testing dataset from benign and ransomware samples
No Benign

Software/Program

Data

Processing

Opcodes

Process

Opcodes

Arithmetic

Opcodes

Logic

Opcodes

Control Flow

Opcodes

Total

1 Defrag.exe 16424 4116 10009 7056 9654 47259

Ratio 0.3475 0.0871 0.2118 0.1493 0.2043 1.0000

2 petya 2.exe 32682 6592 17918 10897 13303 81392

Ratio 0.4015 0.0810 0.2201 0.1339 0.1634 1.0000

3 colorcpl.exe 6861 1885 5526 3246 4324 21842

Ratio 0.3141 0.0863 0.2530 0.1486 0.1980 1.0000

4 teslacrypt 3.exe 26848 5073 21489 10788 14089 78287

Ratio 0.3429 0.0648 0.2745 0.1378 0.1800 1.0000

5 wannacry+.exe 294313 49985 167374 134839 160103 806614

Ratio 0.3649 0.0620 0.2075 0.1672 0.1985 1.0000

6 resmon.exe 8543 2199 5670 4151 5261 25824

Ratio 0.3308 0.0852 0.2196 0.1607 0.2037 1.0000

7 mblctr.exe 65404 19910 62871 26866 46543 221594

Ratio 0.2952 0.0898 0.2837 0.1212 0.2100 1.0000

8 vipasana 2.exe 55622 10551 25397 26058 22199 139827

Ratio 0.3978 0.0755 0.1816 0.1864 0.1588 1.0000

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1007

Figure 1. Training processes of Hidden Markov Model (HMM)

Figure 2. Testing processes of Hidden Markov Model (HMM)

5. Empirical results and discussions

The empirical for testing the proposed proactive

approach for detecting ransomware based on Hidden

Markov Model (HMM) are conducted on MATLAB

software [26] for the sake of analysing training and

testing datasets, which are generated and collected

from benign and ransomware samples. First, the

empirical computed Problem 3, which is training

HMM model, twice for both training datasets of

benign samples, in Table 3, and ransomware

samples, in Table 4, as depicted in Figure 1. The

results are shown as the following:

𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

= [
0.9000 0.1000
0.0500 0.9500

]

𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑀𝑎𝑡𝑟𝑖𝑥

= [
0 0 0

0.3333 0.0642 0.2329
 0 0
 0.1615 0.2081

]

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑇𝑟𝑎𝑖𝑛𝑒𝑑) 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝑀𝑎𝑡𝑟𝑖𝑥 = [
0 1
0 1

]

Training Datasets

Ransomware Training Dataset Benign Training Dataset

HMM Training

HMM:

Problem 3: Learning.

Problem 1: Evaluation.

Problem 2: Decoding.

HMM:

Problem 3: Learning.

Problem 1: Evaluation.

Problem 2: Decoding.

Ransomware Profile Benign Profile

Execute/Run

No

Yes Testing

Datasets

HMM:

Problem 3: Learning.

Problem 2: Decoding.

Problem1: Evaluation.

Ransomware

Profile?

Benign

Ransomware

Block

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1008

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑇𝑟𝑎𝑖𝑛𝑒𝑑) 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑀𝑎𝑡𝑟𝑖𝑥

= [
0 0 0

0.2000 0.2000 0.2000
 0 0
 0.2000 0.2000

]

𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
= [1 3 5 4 2]

𝐵𝑒𝑛𝑖𝑔𝑛 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = [
0.9000 0.1000
0.0500 0.9500

]

𝐵𝑒𝑛𝑖𝑔𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑀𝑎𝑡𝑟𝑖𝑥

= [
0.2635 0.0712 0.3767

0 0 0
 0.1104 0.1783

0 0
]

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑇𝑟𝑎𝑖𝑛𝑒𝑑) 𝐵𝑒𝑛𝑖𝑔𝑛 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

𝑀𝑎𝑡𝑟𝑖𝑥 = [
1 0
0 1

]

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑇𝑟𝑎𝑖𝑛𝑒𝑑) 𝐵𝑒𝑛𝑖𝑔𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑀𝑎𝑡𝑟𝑖𝑥

= [
0.2000 0.2000 0.2000

0 0 0
 0.2000 0.2000

0 0
]

𝐵𝑒𝑛𝑖𝑔𝑛 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = [3 1 5 4 2]

Second, the empirical calculated Problem 1,

which is an evaluation and a likelihood, and Problem

2, which is a decoding, of the HMM model twice for

both training datasets of benign samples, in Table 3,

and ransomware samples, in Table 3, as illustrated in

Figure 1. The aim of these two steps is to construct

benign profile and ransomware profile, which they

will be used as benchmarks in testing process later

on. The results are revealed in the next:

𝑅𝑎𝑛𝑠𝑜𝑚𝑎𝑤𝑟𝑒 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝑡𝑎𝑡𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

= [
0 0 0
1 1 1

 0 0
 1 1

]

𝑅𝑎𝑛𝑠𝑜𝑚𝑎𝑤𝑟𝑒 𝐵𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑒 𝑃𝑎𝑡ℎ (𝑉𝑖𝑡𝑒𝑟𝑏𝑖)
= [2 2 2 2 2]

𝐵𝑒𝑛𝑖𝑔𝑛 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑆𝑡𝑎𝑡𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

= [
1 1 1
0 0 0

 1 1
 0 0

]

𝐵𝑒𝑛𝑖𝑔𝑛 𝐵𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑒 𝑃𝑎𝑡ℎ (𝑉𝑖𝑡𝑒𝑟𝑏𝑖)
= [1 1 1 1 1]

Finally, the empirical computed Problem 3,

Problem 2, and Problem 1 of the HMM model for

testing dataset of benign and ransomware samples in

Table 5 randomly, as explained in Figure 2. Then,

the gained result is compared to the ransomware

profile, and in case it matches the profile, the sample

is classified as a ransomware, or otherwise is

classified as a benign software. The proposed

proactive approach for detecting ransomware based

on Hidden Markov Model (HMM) detected and

classified all ransomware samples in the testing

dataset precisely with 85% accurate ransomware

testing samples emissions sequence. As well, it

detected and classified all benign samples in the

testing dataset exactly with 60% accurate benign

testing samples emissions sequence, with overall

73% accurate testing samples emissions sequence, as

shown in Table 6 and Table 7.

Table 6. The results of Hidden Markov Model (HMM) on testing dataset samples

No Program Posterior State

Probabilities

Emissions

Sequence

Best State Path

(Viterbi)

Classification

1 Defrag.exe [1 1 1 1 1] [1 3 5 4 2] [1 1 1 1 1] Benign

2 petya 2.exe [2 2 2 2 2] [1 3 5 4 2] [2 2 2 2 2] Ransomware

3 colorcpl.exe [1 1 1 1 1] [1 3 5 4 2] [1 1 1 1 1] Benign

4 teslacrypt 3.exe [2 2 2 2 2] [1 3 5 4 2] [2 2 2 2 2] Ransomware

5 wannacry+.exe [2 2 2 2 2] [1 3 5 4 2] [2 2 2 2 2] Ransomware

6 resmon.exe [1 1 1 1 1] [1 3 5 4 2] [1 1 1 1 1] Benign

7 mblctr.exe [1 1 1 1 1] [1 3 5 4 2] [1 1 1 1 1] Benign

8 vipasana 2.exe [2 2 2 2 2] [1 4 3 5 2] [2 2 2 2 2] Ransomware

Table 7. The percentage of detection and classification for testing dataset samples
No Classification Detection and Classification

Percentage

Emissions Sequence Percentage

1 Benign 100% 60% 73%

2 Ransomware 100% 85%

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1009

6. Conclusion

This research paper proposed a new proactive

approach for detecting ransomware based on Hidden

Markov Model (HMM). The approach is a proactive,

since it firstly analyzes the samples, and in case it

classifies it as a ransomware, it will detect and

eliminate it before the execution. It generated and

collected training and testing datasets from various

benign and ransomware samples. In the meantime, it

investigated and analyzed the samples in terms of

Assembly language instructions, or Opcodes, in

order to explore the sharable Assembly language

instructions among the entire samples. The most

common sharable Assembly language instructions

among the complete samples as discovered by the

research were 59 instructions, which were grouped

and clustered according to the type of instruction

operation, which includes 5 different operation types,

namely Data Processing Instructions (Opcodes),

Process Instructions (Opcodes), Arithmetic

Instructions (Opcodes), Logic Instructions

(Opcodes), and Control Flow Instructions (Opcodes).

The approach identified and constructed benign

profile and ransomware profile, which will be used

as benchmarks for classifying testing dataset later on.

Empirically, the proposed approach detected and

classified all ransomware samples in the testing

dataset precisely with 85% accurate ransomware

testing samples emissions sequence. As well, it

detected and classified all benign samples in the

testing dataset exactly with 60% accurate benign

testing samples emissions sequence, with overall

73% accurate testing samples emissions sequence.

Hopefully the future works will expand this research

to involve more ransomware samples.

7. References

[1] P. Paganini, “Thousands of servers infected with

the Lilocked Ransomware,” securityaffairs.co,

07-Sep-2019.

[2] C. Cimpanu, “Ransomware gang wanted $5.3

million from US city, but they only offered

$400,000,” www.zdnet.com, 2019. [Online].

Available:

https://www.zdnet.com/article/ransomware-gang-

wanted-5-3-million-from-us-city-but-they-only-

offered-400000/. [Accessed: 13-Sep-2019].

[3] C. Cimpanu, “Thousands of servers infected with

new Lilocked (Lilu) ransomware,”

www.zdnet.com, 2019. [Online]. Available:

https://www.zdnet.com/article/thousands-of-

servers-infected-with-new-lilocked-lilu-

ransomware/. [Accessed: 13-Sep-2019].

[4] I. Ilascu, “Fake PayPal Site Spreads Nemty

Ransomware,” www.bleepingcomputer.com,

2019. [Online]. Available:

https://www.bleepingcomputer.com/news/security

/fake-paypal-site-spreads-nemty-ransomware/.

[Accessed: 13-Sep-2019].

[5] S. Morgan, “Global Ransomware Damage Costs

Predicted To Exceed $5 Billion In 2017,” May-

2017.

[6] K. P. Subedi, D. R. Budhathoki, and D. Dasgupta,

“Forensic Analysis of Ransomware Families

Using Static and Dynamic Analysis,” 2018 IEEE

Secur. Priv. Work., pp. 180–185, 2018.

[7] E. Kirda, “UNVEIL: A large-scale, automated

approach to detecting ransomware (keynote),”

2017 IEEE 24th Int. Conf. Softw. Anal. Evol.

Reengineering, pp. 1–1, 2017.

[8] S. Poudyal, K. P. Subedi, and D. Dasgupta, “A

Framework for Analyzing Ransomware using

Machine Learning,” in 2018 IEEE Symposium

Series on Computational Intelligence (SSCI),

2018, pp. 1692–1699.

[9] D. Y. Kim, G. Y. Choi, and J. H. Lee, “White list-

based ransomware real-time detection and

prevention for user device protection,” 2018 IEEE

Int. Conf. Consum. Electron. ICCE 2018, vol.

2018-Janua, pp. 1–5, 2018.

[10] M. M. Ahmadian and H. R. Shahriari, “2entFOX:

A framework for high survivable ransomwares

detection,” 13th Int. ISC Conf. Inf. Secur.

Cryptology, Isc. 2016, pp. 79–84, 2016.

[11] S. K. Sasidharan and C. Thomas, “A Survey on

Metamorphic Malware Detection based on

Hidden Markov Model,” 2018 Int. Conf. Adv.

Comput. Commun. Informatics, ICACCI 2018, pp.

357–362, 2018.

[12] R. Pranamulia, Y. Asnar, and R. S. Perdana,

“Profile Hidden Markov Model for Malware

Classification - Usage of System call Sequence

for Malware Classification,” 2017.

[13] S. P. Thunga and R. K. Neelisetti, “Identifying

metamorphic virus using n-grams and Hidden

Markov Model,” 2015 Int. Conf. Adv. Comput.

Commun. Informatics, ICACCI 2015, pp. 2016–

2022, 2015.

[14] B. Pechaz, M. V. Jahan, and M. Jalali, “Malware

detection using hidden markov model based on

markov blanket feature selection method,” 2nd

Int. Congr. Technol. Commun. Knowledge,

ICTCK 2015, no. Ictck, pp. 558–563, 2016.

[15] K. Xin, G. Li, Z. Qin, and Q. Zhang, “Malware

detection in smartphone using Hidden Markov

Model,” Proc. - 2012 4th Int. Conf. Multimed.

Secur. MINES 2012, pp. 857–860, 2012.

[16] D. Jurafsky and J. H. Martin, An Introduction to

Natural Language Processing, Computational

Linguistics, and Speech Recognition, Third Edit.

2018.

[17] L. R. Rabiner, “A tutorial on hidden Markov

models and selected applications in speech

recognition.,” in Proceedings of the IEEE, 77(2),

1989, pp. 257–286.

[18] T. H. Austin, E. Filiol, S. Josse, and M. Stamp,

“Exploring hidden Markov models for virus

analysis: A semantic approach,” Proc. Annu.

Hawaii Int. Conf. Syst. Sci., pp. 5039–5048, 2013.

[19] T. T. Teoh, Y. Y. Nguwi, Y. Elovici, N. M.

Cheung, and W. L. Ng, “Analyst intuition based

Hidden Markov Model on high speed, temporal

cyber security big data,” ICNC-FSKD 2017 - 13th

Int. Conf. Nat. Comput. Fuzzy Syst. Knowl.

Discov., pp. 2080–2083, 2018.

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1010

[20] S. Alqurashi and O. Batarfi, “A comparison

between API call sequences and opcode

sequences as reflectors of malware behavior,”

2017 12th Int. Conf. Internet Technol. Secur.

Trans. ICITST 2017, pp. 105–110, 2018.

[21] M. Imran, M. T. Afzal, and M. A. Qadir,

“Similarity-Based Malware Classification Using

Hidden Markov Model,” Proc. - 4th Int. Conf.

Cyber Secur. Cyber Warf. Digit. Forensics,

CyberSec 2015, pp. 129–134, 2016.

[22] H. Divandari, B. Pechaz, and M. V. Jahan,

“Malware detection using Markov Blanket based

on opcode sequences,” 2nd Int. Congr. Technol.

Commun. Knowledge, ICTCK 2015, no. Ictck, pp.

564–569, 2016.

[23] F. Rezaei, M. Hamedi-Hamzehkolaie, S. Rezaei,

and A. Payandeh, “Metamorphic viruses detection

by hidden Markov models,” 7’th Int. Symp.

Telecommun., pp. 821–826, 2015.

[24] Y. Nativ, “theZoo project.” [Online]. Available:

https://github.com/ytisf/theZoo. [Accessed: 15-

Aug-2019].

[25] CrowdStrike, “reverse.” [Online]. Available:

https://www.reverse.it/. [Accessed: 15-Aug-

2019].

[26] MathWorks, “MATLAB.” MathWorks, 2019.

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1011

Appendix 1

Table 1. The overall generated and collected dataset from benign samples

No Benign

Software/Program

Data

Processing

Opcodes

Process

Opcodes

Arithmetic

Opcodes

Logic

Opcodes

Control

Flow

Opcodes

Total

1 ComputerDefaults.exe 2217 906 3894 784 1801 9602

2 Defrag.exe 16424 4116 10009 7056 9654 47259

3 DisplaySwitch.exe 27806 9648 59453 8947 24779 130633

4 Magnify.exe 59064 15748 42508 22518 31588 171426

5 Narrator.exe 72352 4144 202347 47781 69287 395911

6 calc.exe 16631 3391 7405 5010 4079 36516

7 clipbrd.exe 11993 3670 8097 4608 6315 34683

8 cmd.exe 20227 4498 13926 6514 17038 62203

9 colorcpl.exe 6861 1885 5526 3246 4324 21842

10 dvdplay.exe 428 311 1028 291 506 2564

11 freecell.exe 5632 1195 6428 2645 2750 18650

12 klist.exe 3034 1148 2264 1150 2059 9655

13 label.exe 1250 468 1050 435 806 4009

14 mblctr.exe 65404 19910 62871 26866 46543 221594

15 mstsc.exe 79785 29979 85167 29352 46704 270987

16 notepad.exe 15627 3503 10828 6927 11635 48520

17 ntprint.exe 4208 1060 3692 2001 3030 13991

18 osk.exe 41958 17077 77010 12778 24615 173438

19 resmon.exe 8543 2199 5670 4151 5261 25824

20 syskey.exe 2028 1021 2316 1101 1480 7946

21 taskmgr.exe 15092 4456 14411 5737 7730 47426

22 winhlp32.exe 517 281 911 353 463 2525

23 write.exe 357 264 821 315 555 2312

Total 477438 130878 627632 200566 323002 1759516

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1012

Appendix 2

Table 2. The overall generated and collected dataset from ransomware samples

No Ransomware Data

Processing

Opcodes

Process

Opcodes

Arithmetic

Opcodes

Logic

Opcodes

Control

Flow

Opcodes

Total

1 cerber.exe 27087 5423 24903 16281 155477 229171

2 cryptowall.exe 21993 1505 50955 13102 16373 103928

3 locky.exe 15425 5158 16462 10435 12260 59740

4 mamba.exe 233132 53856 232065 154467 133771 807291

5 matsnu.exe 9755 2653 13174 4838 5824 36244

6 petrwrap 1.exe 42976 8020 21662 19668 22007 114333

7 petrwrap 2.exe 60185 8278 103806 34585 41059 247913

8 petrwrap.exe 42976 8020 21662 19668 22007 114333

9 petya 1.exe 96530 23008 54206 35338 45482 254564

10 petya 2.exe 32682 6592 17918 10897 13303 81392

11 petya.exe 96530 23008 54206 35338 42333 251415

12 radaman_UPX.ViR.exe 0 0 0 1 0 1

13 satana.exe 8538 443 9593 3906 4516 26996

14 teslacrypt 1.exe 26309 5063 21494 10583 13831 77280

15 teslacrypt 2.exe 40067 9083 15219 14111 18316 96796

16 teslacrypt 3.exe 26848 5073 21489 10788 14089 78287

17 vipasana 1.exe 55799 10582 25264 26035 22068 139748

18 vipasana 2.exe 55622 10551 25397 26058 22199 139827

19 vipasana 3.exe 51241 9714 22437 22000 19819 125211

20 wannacry+.exe 294313 49985 167374 134839 160103 806614

21 wannacry.exe 393909 68355 205262 179467 211577 1058570

22 wannacryPlus.exe 294313 49985 167374 134839 160103 806614

Total 1926230 364355 1291922 917244 1156517 5656268

International Journal of Intelligent Computing Research (IJICR), Volume 10, Issue 3, September 2019

Copyright © 2019, Infonomics Society 1013

