An Arabic Language Interface to Databases Using a Morphologically-based Lexicon, Language Indicators and POS Tagging

Khaleel Al-Rababah
University of Bahrain

Safwan Shatnawi
University of Bahrain

Abstract

In this paper, we propose an Arabic Natural Language Interface to Databases (ANLIDB). The ANLIDB can respond to ill-formed questions submitted by users by bringing those questions to syntactically accepted questions. The ANLIDB also implements algorithms for extracting significant single and multiple phrases from Arabic natural language questions submitted to the database and then constructing and executing SQL questions. In this paper, we are dealing with Arabic language questions. An Arabic natural language (ANL) question is accepted as an input and then outputs all possible relations and its corresponding attributes. Arabic morphological, ontological, and syntactical analyses were applied in this paper. A lexicon derived from the database was created, and a simple part-of-speech (PoS) was implemented as well. The system shows high rates of success in identifying relations, correct mapping of attributes, and constructing and executing SQL statements.

Keywords: Morphology, Arabic Language, Syntactic, Lexicon, Natural Language, Finite State Automata, Stem.

1. Introduction

Organizations today use relational database management systems (RDBMSs) to hold huge volume of information. The process of retrieving information from such databases by filling in a form and setting too many parameters might not be the perfect way for computer- inexperienced employees to get the right information needed [2]. Natural language database interface would allow users to access data in a database by issuing questions in a natural language. The submitted natural language question is analyzed into a representation using lexical, syntactical, semantic, and linguistic knowledge. Automatic recognition of significant terms found in a natural language question plays a significant role in Natural Language applications such as machine learning, natural language interface to databases (NLIDB), and translation. The main objective of this paper is to respond to even ill-formed Arabic Natural Language questions, the response relies on bringing those questions to syntactically correct questions.

Arabic language is considered to be a Semitic language with richness in morphology. [9]. An Arabic word is classified as a particle, noun, or verb. Arabic language consists of 28 characters. Arabic is different from English in which nouns do not start with capital letters, which makes it a challenging task to recognize and extract proper nouns from text. Suffixes, prefixes and infixes play a role in creating different patterns of the same noun. Also, there are specific suffixes if added to a term; it could change the word from masculine to feminine. Also most written Arabic text suffers from the absence of diacritics which creates ambiguity and as a result complex morphological rules need to be applied to identify target nouns. Arabic language is known to be a high inflectional and derivational language which makes the morphological analysis very complicated [6].

This paper is organized as follows: In section 3 we presented related works, in section 4 domain description was given, section 5 gives a detailed description of system architecture, section 6 related to experiments and results, while section 7 is the conclusion and future work.

2. Related Work

Wissal Brini et al. [5] outlined a group of problems of identifications of proper nouns. The first problem is the lack of vocalization which can result in ambiguity. The second identified problem is lack of capitalization which makes it hard to identify named entities. The last problem is the delimitation problem which related to the lack of information about unknown words and the presence of homonyms which can increase ambiguity.

Mohammad Moimul et al. [10] stated that most common natural language questions submitted to a database can be identified by a small number of formulated structures. These structures can be outlined by finding delimiters of words that is important for formulating the question in a form like SQL (Structured Query Language).

Safwan and Rajeh [12] developed a generic, dynamic, and domain independent English language interface to database. A data synonym tree was developed which is based on a database under study, also they implemented a syntax state table in order to extract the SQL artifacts from a natural question submitted by a user.
Riyad et al. [6] used a set of keywords and special verbs to identify Arabic nouns; the keywords are used to mark name phrases that might contain certain proper noun, and then a process is used to extract those nouns.

Mohammed et al. [8] presented an Arabic Retrieval System using Native language instead of using SQL. The paper shows a method for extracting tables and attributes from an Arabic natural language question; the method is basically based on generating all combinations of stems, suffixes, and prefixes of a given token and then search for the prefix in the lexicon of prefixes, search for stem in lexicon of stem, and then finally search suffixes in the lexicon of suffixes. Finally, translate the match into Buckwalter code. The translated word is then mapped to a relation or an attribute.

Faraj A. El-Mouadib et al. [13] demonstrated an Augmented Transition Network technique to extract nouns from a sentence; first, it checks that tokens structures is in allowable grammatical structure using a parser based on Context-Free Grammar and then extract the phrases from parser nodes.

[9] showed that a database is made up of three types of elements: relations, attributes, and values. Also, it outlined that each element is distinct and unique. Also, it noted that many natural language questions specify a free-standing value, where the attribute is implicit. Finally, it specifies that each token matches a unique database element.

[14] highlighted the possible problems that could happen when translating a question noun into its correct relation or attribute; those problems correspond to M-o-1 and 1-to-N mappings between linguistic expressions and both relations and attributes.

3. Domain Description

The following ERD shows the domain under study

![Figure 1. ERD Diagram](image)

4. System Architecture

The system will receive an Arabic question in a natural form and then carry out the processing as depicted in figure 2.

![Figure 2. System Architecture](image)

The system is composed of the following main components:

A. Lexicon construction

The lexicon contains all ANL words related to the domain under study; these words describe the domain; they are obtained by analyzing the domain’s database schema elements which could be in a form of relations (tables), attributes, or relationships among relations. The lexicon is considered to be the backbone for the proposed system. Two approaches are used to construct the lexicon: pattern-morphology approach and morphologically-based stemming. The two approaches were used to shed light on the effect of using different lexicon construction methods on the accuracy and performance of ANLI systems. The following will describe the approaches used to construct the lexicon.

In pattern-morphology approach, each word that contributes to the description of the database artifacts is selected and stored in the lexicon along with all possible morphological patterns, also we store all words produced by adding prefixes and suffixes to those words’ patterns as a result each word used to describe the domain will generate hundreds of lexicon words; table1 contains example of one word used and subset of the generated lexicon’s words; in addition to that for each word we find all possible synonyms, with each synonym we applied the...
process previously mentioned as in table1, table 2 shows some synonyms for one of the words.

Table 1. Database artifact and possible lexicon's words

<table>
<thead>
<tr>
<th>Word</th>
<th>Pattern</th>
<th>Suffix</th>
<th>Prefix</th>
<th>Generated word</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>شهري</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>شهادتي</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>يمو</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>عامي</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>سن</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>هذا</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>أن</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In morphologically-based stemming lexicon approach, each database artifact is stemmed; we used Shereen Khoja Stemmer which uses both rule-based and database search approaches to stem Arabic words, the stemmed word is stored in the lexicon, also all synonyms of the artifact are stemmed and stored in the lexicon as well, as a result the search space will be reduced by using stemmed words.

B. The relation matcher

The component is responsible for finding relations according to the following logic:

```c
int RelationFinder (string token ) {
    for ( i=0; i < lexicon.size;i++)
        if (token == lexicon[i] )
            Num_of_Relations++
    return Num_of_Relations ; }```

Figure 3. Relation finder

If the Num_of_Relations = 0 then we still need check for attributes as we will see later, but if number of relations and attributes =0 then you prompt the user to enter another ANL question. For example, the ANL question "أعطينينى أعلى راتب" which means "Give me the maximum salary", here no explicit relation found in the question but still the attribute "راتب" indicates which relation does it belong to which in our case it belongs to Employee relation.

Example1: "ورواتبھم وعناوينھم وأرقامھم وأسماءھم" is a submitted ANL (Employees and their names and their addresses and their numbers and their salaries) Each token will be matched against the entries in the lexicon, the following shows part of the lexicon where it shows different morphological forms of The Employee(The Employee) as well as synonyms for The Employee.

Table 3. Lexicon

Since Arabic language supports free order ANL question, the question in Example1 can be submitted in different orders, one form are shown below:

 اسم الموظف ورقم الموظف وعناوين الموظف و أسماء الموظف (Give names and numbers and addresses for employees and their salaries)

C. Attributes matcher

This component identifies attributes. Identifying attributes can be a challenging task due to the following reasons:

Challenges of identifying attributes

- A user can enter ANL in a free order, the following gives two equivalent ANL questions that can mapped to the same database elements but with different order, Example1: اسم الموظف ورقم الموظف وعناوين الموظف و أسماء الموظف means Employee and his name and his address and his number.

Example 2: الموظف ورقم الموظف وعنوان الموظف اسم which employee name and employee address and employee number. The character "و" spelled "wa" in Arabic and means "and" in English as in "واسم" it serves as a conjuction pronoun, and one of the possessive pronouns such as "و" or "ه" in English as in "رقم الوظيفة" which means "his number" whereas "رقم" without "ه" at the end means just "number" in English.

- The ambiguity in identifying attributes as shows in the following example: أعطيني اسم الموظف عنوان موظف رقم القسم رقم الموظف رقم العجز here the token "رقم الموظف" occurred three times; since this token can be found in all of the three tables in the database which poses a challenge to map it correctly to the correct relation.
Cases for identifying attributes

Case 1: Mapping attributes to one relation found in the ANL submitted question.
Here, one relation is identified, the following example illustrates this:
"أعطني معلومات عن الإاجر وأدخل رقم من 100" which means "Give me information about employees whom their salary greater than 100"
The token "الأجرون" , which is a synonym to "الموظفين" , will be mapped to "الموظفين" relation.

Another example,
"أعطني معلومات عن موظف رقم 1000 و عنوانه و اسمه و راتبه" (Give me information about employee his number is 1000 and his address and his name and his salary). Token الموظف موظف, mapped to table, token رقم الموظف اعطيني الموظف, and اسم الموظف الموظف.

Case 2: More than one relation is presented in the ANL question along with more than one attributes. Since relations might have the same attribute names and because of the ill-formed submitted ANL questions, we need to solve any ambiguity in mapping the attribute(s) to the right relations.

The paper used the following logic to map tokens to attributes in the correct relation. Of course, this logic applied after identifying the relations.

```c
for (int i=0; i < token_count;i++)
 { for (int j=0; j < lexicon_count;j++)
 if (token[i] == lexicon[j])
 attrib_counter++;
 if (attrib_counter > 1)
 if (token[i] starts with conjunction or (wa) && token[i] ends with a possessive pronoun)
 relation = most_recently_identified_relation;
 else
 relation = closeness_relation_rule;
 }
```

Figure 4. Attribute finder

The following two examples demonstrate this logic Example: given the following ANL "أعطني رقم الموظف، عنوانه و اسمه و اسم القسم و رقم الموظف" and the question is which attribute of this relation will be mapped to? We suggest to have two defaults attributes for each relation, one for text data type and one for number data value. For the الموظف relation, we assign رقم الموظف as representative default attribute with number data type and اسم الموظف as a default as an attribute with text value. So, 100 will represent رقم الموظف attribute. The ANL question "أعطني معلومات عن الموظف رقم 100" will be expanded to "أعطني معلومات عن الموظف الذي رقم الموظف رقم 100".

D. Condition identification and SQL construction and execution

Several techniques are being approached in this paper to identify the SQL statement parts such as POS and relative pronouns. The POS will primarily be used in identifying verbs; this will serve two purposes: the first purpose will be as a marker that separates the main SQL condition clause from the from clause, while the second purpose will be identifying possible relationships in the ANL question.
• Tagging

In order to carry out the tagging, a lexicon of all possible Arabic language patterns are collected, a sample of those patterns are shown below: 


Tagging is the process of assigning labels for Arabic words; in order to tag a word the algorithm finds all patterns of lexicon that has the same length as the token. For each pattern found in before, find the number of identical letters between the token and the pattern and then locate the pattern which has the maximum number of identical letters with the token. The pattern will indicate the token’s tag. [reference 0]

For example, "فكتبن" will have the pattern "ففعلن".

Another example, the verb "يعملون" in the ANL question, " أعطني معلومات عن الموظفين الذين يعملون في قسم المحاسبة" will serve as “work” relationship between the “Employee” and “Department” tables.

• Relative pronouns

Relative pronouns can identify nouns besides also it can serve as a delimiter which divide the ANL question into two parts: the first part is the SQL type along with the relations and required fields; in the second part, which comes after those indicators is the condition part. Examples of those pronouns are: "الذي" , "التي" , "الذين" , "اللواتي" , "الذان" which correspond to who, whom in English. Nouns, if exist, directly precede those pronouns as shown in the following two examples:

1. أعطني معلومات عن الموظفين الذين يعملون في قسم المحاسبة which is equivalent in English to “Give me information about male employees who work in Accounting department” . It is obvious the existence of the pronoun "الذين" in the sentence which comes right after the word "الموظفين".

2. The ANL question " أعطني معلومات عن الموظفات اللواتي رواتبهم أكبر من 600 " which is equivalent in English to “Give me information about female employees whom their salary is greater than 600. The existence of pronoun "الواتي" serve two things: an identifier for the noun Employees "الموظفات" and this noun is female.

• Condition Construction

Once SQL condition part is identified, the next step is constructing the condition. To construct the condition, condition operators will be identified, table 4 shows the possible operators along with their synonyms and Figure 4 shows different scenarios for constructing such conditions.

As shown in Table 4, "ما يساوي" is a single phrase operator, "لا يساوي" is a two-phrase operator, and "أكبر من" represent a three-phrase operator.

Besides, we identified semantic interpretations for most operators, for example the operator "أكبر من"
Locating a value or a string condition that comes after an attribute:  
Here we search for conditions around explicit attributes; the value that comes after a condition is either a string or a number. The logic will also verify that the token comes after the attribute token is not an attribute or a relation. The logic will also ignore the following words that might occur in any ANL question and proceed searching for a condition operator. Those words are shown in the following array named Ignore. Ignore() = [ "في" , "من" , "على" , "لإ" , "لي" , "ل" , "للو" , "لله" , "ليه" , "بين" , "بينما" , "بها" , "بهم" , "بها" , "بهم" , "رواتبهم" , "رواتبهما" , "رواتبهم" , "رواتبهما" ]  

Here we discuss many possibilities:  

a. It is possible that an attribute is directly followed by one of the following: [ " الذي " , " اللتان " , " اللتان " , " اللذي " , " اللتي " , " اللذين " , " اللذين " , " اللقدين " ]  

The following example explains this:  

["أعطيني رقم الموظف الذين تزيد رواتبهم عن 800"]  

In this question, the hidden attribute is "الموظف". The phrase "الموظف" will be mapped to the database field "الموظف". The phase "الموظف" indicates the beginning of a condition which means "WHERE.". The condition is followed by phrase "تزيد" this phrase indicates the existence of an operators in the Table 4, but checking the following token it was different from it was expected to be "على" ; our logic handles this and brings the ANL question to the form:  

["أعطيني رقم الموظف الذين تزيد عن 1000"]  

b. The condition operator is preceded by an attribute and followed by a value.  

Example:  

["أعطني اسم الموظف وعنوانه ورقمه ورتبته لا يقل عن 800"]  

Also, the following shows the ANL question and its constructed SQL statement:  

As you notice the example represents an ill-formed ANL question where it exhibits syntactic problem where the correct syntax for it is:  

["أعطني اسم الموظف سالما وعنوانه ورقمه ورتبته 800"]

As mentioned above, our system handles complex, ill-formed, and free-order ANL questions. The following question represents an ill-formed ANL question:  

["أعطني معنويات عن الموظفين اسمه المحاسبة، اسم الموظف، العدد ومعنوياتهم من حسابهم"]  

Processing the question, we brought it to a syntactically correct form:  

["أعطني معنويات عن الموظفين ذو الاسم حسابهم ويعملون في قسم المحاسبة"]  

As you notice the example represents an ill-formed ANL question where it exhibits syntactic problem where the correct syntax for it is:  

["أعطني اسم الموظف سالما وعنوانه ورقمه ورتبته 800"]

Case 4: A relation is followed by an operator then a value. The following example shows this case beside it is an example of ill-formed question:  

["أعطني معنويات عن الأقسام القسم أكبر من 60 والقسم أقل من 80"]

As you notice the example represents an ill-formed ANL question where it exhibits syntactic problem where the correct syntax for it is:  

["أعطني اسم الموظف، اسم الموظف، اسم الموظف"]
Another example which can hold ambiguity, "أعطني عن تزيد الرواتب الموظفين التي تزيد عن 50" , here just one attribute "الموظف" was identified in the question and no other attribute was identified in the where clause which was recognized by the existence of the phrase "أعطني". the sentence in English is “Give me Employee’s salaries which exceeds 50”. Ambiguity here rises because it is not totally clear to what 50 refers to, but since one attribute is mentioned in the ANL question then the ANL question was brought to a syntactically correct question as in the following: عن تزيد الرواتب الموظفين الذين أعطيني 50 which in English is “Give the Employees with salary greater than 50”.

Aggregate Functions

Aggregate function phrases are recognized through phrases containing words like "متوسط", "معدل", "متوسط " which means sum. For example, "متوسط" and "معدل" are all Maximum. Both "العائد" and "الدائن" mean Minimum. For example, the ANL questions:

(1) أعطني أكبر راتب موظف
(2) أعطني أعلى راتب موظف
(3) أعطني أعلى راتب
(4) أعطني أعلى راتب عامل من الموظف
(5) أعطني أعلى راتب

"أعطني" means "Give me" and "موظف" means "Employee" and "أعطني" means "Give me" and "مакс" means "Maximum". "أعطني" means "Give me" and "الموظف" means "Employee".

As it was mentioned before that the stemmer will take the first letter "و" as prefix so when the stemmer strip it the remaining characters in the word "وظيفة" which means "Job" will generate a wrong stem. Another example, the token "عنوان" which means "Address", the problem that could arise is that the last two characters "ان" will be considered as suffix which indicates dual whereas they are original characters and losing them will produce a new word which has a different meaning from the original and as result will produce a wrong stem.

If a specific and known domain is to be used then adding new rules to the stemmer can overcome such problems, but if we are looking for portability and the system to be applied to any domain that might dramatically degrade the accuracy of the system. Compared with morphologically- based lexicon, this approach has a smaller lexicon search space. When it comes to accuracy, the accuracy of finding the right relations and its corresponding attributes depends on the accuracy of extracting the correct stem. By removing additives (prefixes, suffixes, infixes) we increase ambiguity. Moreover, stemmers may generate wrong stems.

| Table 5. Proposed System Evaluation |
|-------------------------------|---------------------|---------------------|
| Stem based lexicon | Morphological basic stem |
| SQL Part | Stem A_1 | Stem A_2 | Stem A_3 | Stem A_4 | Morph A_1 | Morph A_2 | Morph A_3 | Morph A_4 |
| Attribbutes | 60 | 15 | Stem A_1 | Stem A_2 | 67 | 8 | Morph A_1 | Morph A_2 |
| Relations | 68 | 7 | Stem A_3 | 70 | 5 | Morph A_3 | |
| Conditions | 62 | 13 | Stem A_4 | 68 | 7 | Morph A_4 |

Where:
- **Stem A_1**: Generation of wrong stems when removing original characters of a token as a result of removing prefixes, suffixes
- **Stem A_2**: Removing the possessive pronouns during stemming which confuses the closeness rule.
- **Stem A_3**: System ignore some tokens that are found to be synonyms to one of the domain relations due to the fact our lexicon doesn’t include all synonyms of a database artifact
- **Stem A_4**: Stemming a value can generate a new value which as a result constructs a different condition
- **Morph A_1**: A synonym of an attribute was not in the lexicon
Morph_A_2. Attributes are wrongly assigned to the wrong relation do to ill-formed and free order questions and the result the closeness rule failed to correctly assign it.

Morph_A_3. System ignores some the tokens that are found to be synonyms to one of the domain relations due to the fact that our lexicon doesn’t include all synonyms of a database artifact.

Morph_A_4. Some tokens were identified as attributes instead of values which prevented the construction of a condition
There are situations where a token can be interpreted as an attribute instead of a value, for example, “الموظفة”; here, the token “موظفة”, which means "Salary" in English, can take the meaning of an attribute name or a value in Arabic. So, according to our domain, it could mean Employee name or it could be an attribute name in the Employee relation.

Removing suffixes will complicate the process of identifying relations since the possessive pronouns will be removed during stemming as a result the closeness rule may not correctly capture the right relation for the attribute. Sometimes these suffixes add implicit condition to the SQL condition part for example

"الموظفات“ stemming “موظفات الموظفة“ produce which will result in retrieving the information of all employee, while the query asks for female employees only, this since the suffix “أت“ is added to the female words in the Arabic language – which implicitly add “where sex = “female“ to the SQL condition part

Results in Figure 5 shows that the system performs much better with “Morphological basic stem“ than using “Stem based“ approach. Also, it shows that, using the two approaches finding and matching the correct attributes is more critical than identifying the right relations.
Moreover, constructing the wrong condition in both approaches can dramatically degrade the system performance.

The system performs very well executing free order ANL questions. The system efficiently handles the case of implicit attributes it checks that the value comes after a relation will not be a relation or an attribute.

6. Conclusion and Future Work

This paper presented a technique to translate ANL questions submitted to databases of specific domain into SQL statements by employees of little experience in using SQL statements. The system uses a lexicon extracted from a domain under study. Morphological, syntactical and ontological Arabic language characteristics are all used in the system.
Certain language markers are served as separators to locate nouns and also to locate parts of SQL statement. Also, a simple POS is created to recognize verbs which can serve as a relationship indicator between relations found around the verb.

The system addresses and handles the following language characteristics:
- The multiplicity of the syntactic interpretation of the same word. Reducing different forms of an element to a canonical form which helps reducing complexity. Handling implicit and explicit attributes and associates those with the right relation. Recognizing markers and separators to recognize nouns and verbs. Handling the free order and ill-formed ANL questions
- The system shows higher percentages of success in constructing and executing SQL statements.

7. Acknowledgment

Thanks goes to deanship of scientific research in University of Bahrain for supporting the work in this paper.

8. References


[12] Safwan shatnawi, Rajeh Khamis, An approach for developing natural language interface to databases using data synonyms tree and syntax state table,

