

Improving Gnutella Query Search Algorithm with Jumps

Kholoud Althobaiti
1
, Sara Jeza Alotaibi

1
, Hend Alqahtani

2

Taif University
1
, Saudi Arabia

Umm Al-Qura University
2
, Saudi Arabia

Abstract

The measurement of a search algorithm for

unstructured P2P network centres on the number of

nodes not receiving their requested files (number of

failures) and the number of hops per query. Most

current search algorithms are unable to guarantee

the success of the query. This study involves a

comparison of the strengths and weaknesses of three

algorithms of Gnutella P2P protocol, namely Flood,

Random Walk, and Random Walk with Neighbours

Table. Based on this comparison, a new query

search method—referred to as Random Walk with

Jumps—is proposed. The experiment proves that the

proposed algorithm can obtain a better result with a

small number of failures and a minimum number of

hops.

1. Introduction

Peer-to-Peer systems (P2Ps) have emerged as a

big social and technical event over the past 15 years

[1]. Two key reasons have promoted the rapid

growth of such systems, namely the low cost and the

large number of storage resources on the one hand,

and the increased network connectivity on the other

hand [9]. Therefore, the P2P network has been

gaining in popularity over recent years.

Peer-to-peer networks generally implement some

form of virtual overlay network on top of the

physical network topology, where the nodes in the

overlay form a subset of the nodes in the physical

network [4]. Based on how the nodes are linked to

each other within the overlay network, and how

resources are indexed and located, we can classify

networks as unstructured or structured. In an

unstructured P2P network, such as Gnutella, no rule

exists that defines where data is stored, whilst in a

highly structured P2P network, such as Chord, the

network architecture and the data placement are

precisely specified. The neighbours of a node are

well-defined and the data is stored in a well-defined

location [2].

Peer-to-peer networks can also be classified into

centralised and decentralised. In a centralised

network, such as Napster, the system makes use of

some form of central server that acts as a broker

between peers. The unique server gathers

information (only indexes) about the clients. In

contrast, decentralised systems, such as Gnutella, use

networks of interconnected servers, replacing the

unique server of centralised architecture; all users

(peers) can be both clients and servers [4].

One of the challenges in P2P networks is

searching the content of nodes (files). In pure P2P

systems, individual computers communicate directly

with one another and share information and

resources without using dedicated servers. In

essence, this is more like a self-organised network of

independent entities.

In this paper, we conducted a detailed study of

the search methods of a pure P2P system: Gnutella.

Gnutella protocol is a decentralised, unstructured

peer-to-peer system, consisting of nodes connected

to one another over TCP/IP network topology and

running software that implements the Gnutella

protocol [2]. Gnutella primarily is used for file-

sharing and has been recognised as a popular file-

sharing protocol in P2P networks [2].

The file-sharing system in the Gnutella network

operates as follows:

1. A user (Node A) starts with a networked

computer that runs one of the Gnutella clients.

The user then connects to another Gnutella

networked computer (Node B). Subsequently,

Node A announces its existence to Node B.

2. Node B then announces to all its neighbouring

nodes that Node A is existent.

3. Once the rest of the nodes are aware of the

existence of Node A, the user at Node A is then

positioned to query the data shared across the

network. [6]

We benefited from Gnutella’s large existing user

base and open architecture. We compared three

search methods of the P2P system Gnutella, namely

Flood, Random Walk and Random Walk with

Neighbours Table. The measurements and the

analysis of the three methods of Gnutella are carried

out when the number of nodes is variable. They are

driven by two primary questions:

1. Which of the three methods has the least average

hops and/or number of failures, and which has

the highest?

2. What is the impact of expanding the network on

the success of the query?

In light of the outcomes, we improved a new

search method - referred to as Random Walk with

Jumps - that allows for better scaling and increased

reliability.

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 600

The rest of the paper is structured as follows:

Section 2 presents the background and the Literature

Review, whilst Section 3 describes the comparison

of the three methods, which helps to answer the

questions introduced earlier; Section 4 introduces the

new query search method for Gnutella; the results

and testing are given in Section 5, whilst Section 6

presents the conclusion and suggestions for future

work.

2. Background and Literature Review

The aim of this paper is centred on identifying

the challenges that still exist in Gnutella P2P query

methods. There are many studies concerned with

improving the Gnutella network: in 2003, researchers

Tsungnan and Hsinping concluded that the Flooding

algorithm generates the best performance in terms of

Search Responsiveness, but its Query Efficiency is

low due to a huge number of redundant messages.

The Random Walk algorithm enjoys high query

efficiency, but nonetheless suffers from low search

responsiveness [14]. From other points, the study

concludes that one of the advantages of Random

Walk over Flooding in unstructured overlays is that

the former provides more precise control over the

number of overlay nodes visited to satisfy a query.

[15]

However, this study differs significantly from

past works, both in purpose and detail. The

researchers used an existing Gnutella code to analyse

the current query methods in order to assess their

overall ability to satisfy the file search requirements.

Then, based on the results, the researchers developed

an improved query method with a small number of

failures and a minimum number of hops.

The study started by examining the Gnutella code

[3], with the reason behind using this source owing

to the fact that it is open source and written in Java

programming language, which is the preference

amongst researchers.

3. Comparison of Gnutella Methods

A good search method must have a small number of

failures and a minimum number of hops. This

section provides a comparison of three Gnutella

methods, namely Flood, Random Walk and Random

Walk with Neighbours Table, using an existing

Gnutella open source code to determine the value of

each search method.
The comparison has garnered the results of

counting the average hops and the number of failures

for each of the three methods. The goal of analysing

these methods is centred on answering the questions

posed earlier in Section 1: Which has the least

average hops and/or number of failures, and which

has the highest? Moreover, what is the impact of

expanding the network on the success of the query?

Answering these questions will prove pivotal in

evaluating the search quality of each of the three

Gnutella algorithms.
The study focuses on calculating the number of

failures and the average hops resulting from 10,000

runs in an overlay of 10,000–100,000 nodes, taking

into account the average of all runs. Some of the

values have been fixed in an effort to establish

accurate results. The maximum number of

neighbours is 10; the number of files is 9,000 (with a

maximum number for each node between 5 and 50).
The rest of this section highlights the advantages and

disadvantages associated with each of the three

methods discussed as follows.

3.1. Flooding Algorithm

Flooding distributes the file across every graph in a

network. The following steps depict how this

algorithm works:

1. One of the nodes requests a file.

2. Each node works as a sender and receiver,

except in the case of the first node.

3. Each node attempts to send all messages to all

its neighbours, with the exception of the source

of the message. Therefore, at the very end, the

querying node will receive its requested file, as

seen in Figure 1 [4].

Figure 1. Flooding algorithm

The benefits of this algorithm are: if the packet can

be delivered, it will be. Since flooding uses all

existing paths, it also uses the shortest path. Flooding

is easy to implement [4]. However, Flooding

Algorithm is costly since it wastes bandwidth. The

message supposed to arrive at one specific node but

instead it sent to all nodes [4]. In addition, duplicated

deliveries may occur, which could drive the

algorithm to infinite loop unless certain precautions

are taken. For example:

1. Allow each node to keep track of every packet

seen, and then forward each of those packets

only once.

2. Enforce a network topology without loops (P2P

networks like Gnutella do not have topology,

meaning there is no need to take this

precaution).

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 601

//Flood asks every neighbor if they have the
file
public int Flood(Query in){
 boolean fileFound = false;
 //at the beginning it is not found
 in.nodeIdsVisited.add(new NodeIds(nodeId));
 //visit other nodes
 in.hopCount++;

if(this.fileList != null){
//if the node’s file list not empty
 for(int i=0; i< fileList.size(); i++){

if(fileList.get(i).FileName.equals(in.file.FileN
ame)) //search for the file
 fileFound=true;} //file found
 }
 }

if(fileFound){
 return nodeId; //found with nodeId
 }
else if(in.hopCount >= 7){
 return -1; //not found -1 hopecount
 }
else{
 if(neighbors != null){
 //visit another neighbor
 for(int i= 0; i< neighbors.size(); i++){
//zero node is special node and does not exist
if(neighbors.get(i).nodeId !=0){
 return neighbors.get(i).Flood(in);}

}
 }
}
 return -100 //fail to found the file
}

3.2. Random Walk Algorithm

The Random Walk Algorithm is a popular

alternative to Flooding. It distributes the file to a

Random walker, which chooses a random node to

walk to. It is considered the best choice in

applications for statistics, Physics and Artificial

Intelligent (Bayesian Inference). It is also referred to

as Markov Chain [16].

Figure 2. Illustrate Random Walk algorithm

This Algorithm is explained in Figure 2, with the

help of the following steps:

1. The querying node sends the number of queries

to a randomly selected neighbour. Each one of

these queries is referred to as Random walker.

2. Each Random walker has a hop count (in this

study, its value is 7). When a node receives a

random walker, it searches for the requested file

in the node file list. If the file is not found, the

node checks the hop count. If the hop count=>0,

it decrements by one and forwards the query to a

randomly chosen neighbour. If count=0, the

query is not forwarded. On the other hand, if the

file is found, the query is not forwarded and a

reply is sent to the querying node.

//random walk uses a random walker who chooses a
random node to walk to
Public int RandomWalk(Query in){
//pick random neighbor to ask
Random rand = new Random();
int neighborToAsk = 0;
in.nodeIdsVisited.add(new NodeIds(nodeId));
in.hopCount++;
boolean fileFound=false;

if(neighbors == null || (neighbors.size() <=0)){
 return -100; //No neighbors mean fail
 }
else{
//remember the neighbor is a random
neighborToAsk = rand.nextInt(neighbors.size());
 }
if(this.fileList != null){
//search for file
 for(int i=0; i< fileList.size(); i++){

if(fileList.get(i).FileName.equals(in.fil
e.FileName)){
 fileFound=true;
 }

}
 }
}

if(fileFound){
 return nodeId; //it found at nodeId
 }
else if(in.hopCount >= 100){
 return -1;
 }
else{
 if(neighbors != null){
return
neighbors.get(neighborToAsk).RandomWalk(in);
 }
}
return -100; //fail to find the file
}//end method Random Walk

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 602

Random Walk algorithm is equally successful to

ordinary Flooding. If the file is nearby, it can be

considered less costly than Flooding [17–18]. It does

not require any topology information; P2P network

does not have any topology network [18]. The

performance of the Random walk depends on

choosing the parameters of the Random walk (the

number of queries and hop counts). The popularity of

a resource is required for the parameters selection

module to set their values. The number of requests

here is fewer than in an ordinary Random Walk [17].

After all, Random Walk Algorithm has several

problems. If the file is not found, more messages are

generated than in the case of Flooding [18]. Each

random walker needs a time allowance to live or hop

count; otherwise, duplicated deliveries could occur.

Choosing low values for parameters for searching a

file with a low popularity estimate would result in a

low success rate and high delays, whilst choosing

high values of parameters for searching a file with a

high popularity estimate would result in excessive

overhead [17–18].

3.3. Random Walk with Neighbours Table

Algorithm

This is similar to ordinary Random walk; in this
method, the querying node checks to determine
whether its neighbours’ list of files has the desired
query within them. If so, that neighbour is walked to
if it is not randomly chosen.

As shown in Figure 3, the algorithm works as
follows:

1. The method will begin by examining the querying

node’s list of neighbours. It searches for the

requested file in each neighbour’s list of files. If

the file is found in the file list of any neighbour,

the method walks directly to the neighbour. If

the file is not found on any list, a neighbour is

randomly chosen, and the method completes

another search for the file in the neighbour’s

list.

2. Each one of the randomly generated has a hop

count (in this code, its value is 7). When this

node receives the request, it searches for the

requested file in this node’s list of files. If the

file is not found, the node checks the hop count.

If hop count=>0, it decrements by one and

forwards the query to another randomly chosen

neighbour. If count=0, the query is not

forwarded. On the other hand, if the file is

found, the method walks directly to that

neighbour.

There are many advantages of this algorithm. If

the requested file is nearby, the method is

considered less costly, even when compared with

Ordinary Random Walk. It does not require any

topology information; P2P networks do not require

any [19–20].

However, there are limitations to the algorithm:

for example, if the file is not found, more messages

are generated. Each random move requires TTL or

hop count; otherwise, duplicated deliveries could

occur [19–20].

public int RandomWalkWithNeighborTable(Query
in){
//pick random neighbor to ask
Random rand = new Random();
int neighborToAsk = 0;
boolean neighborHasFile=false;
int neighborWithFile =0;
in.nodeIdsVisited.add(newNodeIds(nodeId));
in.hopCount++;
boolean fileFound=false;
//Begin Lookup of neighborTable
if(neighbors != null){
for(int i= 0; i< neighbors.size();i++){
 if(this.fileList != null){ //make sure
for(int j=0; j< fileList.size(); j++){
//look for the file in fileList
if(fileList.get(j).FileName.equals(in.file.FileN
ame)){
 neighborHasFile=true; //file was found
 neighborWithFile = i; // assign the value
to visit
break;
}} } }}
if(neighbors==null||(neighbors.size()<=0)){
 return -100; //No more Neighbors.fail
 }
else if(neighborHasFile){
 neighborToAsk = neighborWithFile;
 }
else{
 neighborToAsk=
 rand.nextInt(neighbors.size());//ask again
 }
if(this.fileList != null){
// if it hold files then will search in its list
for(int i=0; i< fileList.size(); i++){
if(fileList.get(i).FileName.equals(in.file.FileN
ame)){
 fileFound=true;

}
 }

Figure 3. Illustrate Random Walk with Neighbours

Table algorithm

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 603

3.4. Results of Analysing Gnutella Methods

In general, the results of the analysis show that

number of failures is the least in Flooding compared

to Random Walk and Random walk with Neighbours

Table. Although Flooding has the lowest number of

failures (strength), as shown in Table 1 and described

in Figure 4, at the same time, it also has the highest

average of hops (weaknesses). Random Walk shows

the lowest average hops (strength) and a moderate

value for the number of failures, as mentioned in

Table 2 and Figure 5. The results of the Random

Walk with Neighbours Table do not differ

significantly from those of the Random Walk

method.

Table 1. Analysing result of no. of failures

Figure 4. Analysing result of no. of failures

Table 2. Analysing result for average hop

Figure 5. Analysing result of average hop

In light of these results, it can be seen that writing

a new method should be done in order to minimise

the number of failures as in Flood, whilst at the same

time minimising the number of requests as in the

Random Walk method.

4. Design New Search Query Method

This paper proposes a new search query method.

The so-called Random Walk with Jumps is a popular

alternative to Flooding. This algorithm can be

considered a Random Walk search algorithm in

which the random walk makes jumps. The expected

jump length is randomly walked (see Figure 6).

Figure 6. Illustrate Random Walk with Jumps

algorithm

The querying node sends the number of queries to a

randomly selected neighbour. It then chooses a

random length to jump. If the jump length=>0, it

passes to another random neighbour and decrements

the length by one. If jump=0, it stops passing and

searches for the file in the current node. This step

then is considered a Single Random Walk.
Each Random walker has a hop count (in this

code, its value is 7). When a node receives a

Random walker, it searches for the requested file in

the node file list. If the file is not found, the node

checks the hop count. If hop count=>0, it decrements

by one and forwards the query to a randomly chosen

neighbour, and accordingly performs another

random walk. If count=0, the query is not forwarded.

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 604

On the other hand, if the file is found, the query is

not forwarded and a reply is sent to the querying

node.

4.1. Advantages

 As successful as an ordinary Random walk.

 The jumps reduce focus on a specific area. This

advantage provides the ability to cover
different areas of node locations and,
subsequently, speeds up the search and
accordingly reduces network capacity [5].

 If the file is on a remote area, the new method

can be considered less costly than Random
walk [5].

 The method reduces the number of requesting

messages, even if there are no files in the
graph. The number of requests is smaller than
in the ordinary Random Walk [5].

4.2. Problems

As with the Random Walk, if low values were

chosen for parameters, searching for a file with low

popularity estimate would result in a low success

rate and high delays, whilst choosing high values of

parameters to search with high popularity estimates

would result in excessive overheads [5].

4.3. Code Description

The code below starts with a conditional

statement that allows the querying node to check

whether there are neighbours in the graph. If the

nodes do not have any neighbours, this means the

jump is a fail; the value of fail then would change to

true.

public int RandomWalkWithJumps(Query in , int
length){
Random rand = new Random();//Randoma walk
int neighborToAsk = 0;
in.nodeIdsVisited.add(new NodeIds(nodeId));
boolean fileFound = false;//at the begin no file
found
if(neighbors == null || (neighbors.size()<=0)){
 fail = true; //fail because no neighbors
 }
else{
 neighborToAsk =
 rand.nextInt(neighbors.size());
 }

Thus, if the jumps are not yet finished and do not

fail, the method would then jump to the next
neighbour. It keep jump until jump count finish or no
more neighbours.

if(length>0 && !fail){
 return
neighbors.get(neighborToAsk).RandomWalkWithJumps
(in,length-1);
 }

After finishing the jump, the method searches for a
specific file in the file list at the last neighbour in the
jump.

if(this.fileList != null){
 for(int i=0; i< fileList.size(); i++){

if(fileList.get(i).FileName.equals(in.fil
e.FileName)){
 fileFound=true;
 }
 }
 }

if(fileFound){
 return nodeId;
 }

The search will check different cases: it will check

whether the file is found, and then will return the

current node ID if it is. It will also check whether the

hop count is already 3; if it is, it will return –1 (small

because the graph does not have huge dimensions). If

there are neighbours and the jump does not fail, the

search will again return to the function. If the case is

not one of these, it returns –100, which means fail,

and the number of failures increases by 1.

if(fileFound){
 return nodeId;
 }
else if(in.hopCount >= 3){
 return -1;
 }
else{
 if(neighbors != null && !fail){
 length = rand.nextInt(3);
 in.hopCount++;
return
neighbors.get(neighborToAsk).RandomWalkWithJumps
(in , length);
 }
}
return -100;
}//end method Random Walk With Jumps

5. Testing and Results

In general, the findings indicate that the value of

average hops is approximately 2. In addition, the

number of failures is between (1500< #of

failures<4500) for 10,000 test times. The number of

failures decreased when the number of nodes

increased in all four algorithms because the number

of files is fixed whilst the number of nodes is

variable. Wherefore, the probability of finding the

file increased in 100,000 nodes more than 10,000 of

them.

As it can be seen in Table 3 and Figure 7, the

Random Walk with Jumps algorithm has the best

score in average hops as it jumps first then asks for a

specific file, meaning it searches a wide area. The

number of failures is not as minimised as in Flooding

because Flood sends the query for all the nodes.

However, Random Walk with Jumps is better than

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 605

the Random Walk and Random Walk with

Neighbours Table (see Table 3, Figure 7). Thus, this

method beats the best values in the three methods,

which are the number of failures as Flooding and

average hop as Random Walk and Random Walk

with Neighbours Table. The following results are for

the number of nodes between 10,000 and 100,000.

Table 3. Analysing results of four methods for

number of failures

Flood RW
RW with RW with

NT Jumps

10000 1153 3733 4489 2220

20000 933 4096 4123 2285

30000 638 3526 3949 1939

40000 583 3581 4018 1248

50000 528 3598 3611 1077

60000 561 2750 3404 1110

70000 419 3560 3669 1127

80000 250 3214 3602 647

90000 295 3400 3231 733

100000 387 3221 2817 857

Table 4. Analysing results of four methods for

average hops

Flood RW

RW with

NT
RW with

Jumps

10000 4.8500 3.9782 3.9151 2.9979

20000 4.8830 4.1479 4.0993 2.991

30000 4.9899 4.4332 4.2190 2.9906

40000 4.9982 4.4126 4.2155 2.988

50000 5.0326 4.4500 4.4166 2.995

60000 5.0109 4.9728 4.6250 2.993

70000 5.0067 4.5010 4.4335 2.993

80000 5.0455 4.7446 4.4353 2.9843

90000 5.0302 4.6148 4.7522 2.9919

100000 5.0468 4.7681 5.0731 2.9917

Social life, which has promoted the success of the

Gnutella network, might change, causing the

network to fade. However, P2P is recognised as one

of those rare things that, quite simply, are too good

to go away.
The open architecture, achieved scale and self-

organising structure of the Gnutella network make it

an interesting P2P architecture for examination [9].

The measurement and analysis techniques used here

also can be used for most P2P systems in order to

enhance general understanding of the design.

6. Conclusion and Future Work

This paper analysed the Gnutella network in an

effort to study its current methods. The study then

compared three of the methods, namely Random

Walk, Flooding and Random Walk with Neighbours

Table, in an effort to identify which has the least

average hops and/or number of failures and which

has the highest. Subsequently, the paper proposed a

new query search method, known as Random Walk

with Jumps. The new method has proven to be a

much better approach with a small number of

failures and a minimum number of hops.
There is a potential direction for future study,

which is centred on improving the new method to

achieve a fewer number of failures.

7. References

[1] A. Basu, S. Fleming, J. Stanier, S. Naicken, I.

Wakeman, and V. Gurbani, (2013). ‘The state of peer-to-

peer network simulators‖’ ACM Computing Surveys

(CSUR), 45(4).

[2] Y. Wang, X. Yun and Y. Li, (2007). ‘Analyzing the

Characteristics of Gnutella Overlays’, Information

Technology, IEEE, pp. 1095–1100.

[3] Tsungnan and Hsinping, (2010, May.). ‘Gnutella-

peersim Experiment with gnutella’, Google code,

https://code.google.com/p/gnutella- peersim/ (12 May,

2015)

[4] S. Tanenbaum and J. W. David, (2010). Computer
Networks, Pearson Publisher, 5th Edition.

[5] R. Beraldi (2009) ‘Random walk with long jumps for
wireless ad hoc networks’, Department of Computer and
Systems Engineering, University of Rome, Italy, vol. 32,
pp. 294–306.

[6] F. Hermann, (2002). Scalability of the Gnutella
Network and Business Opportunities of Peer-to-Peer
Networking, GRIN Verlag Publisher.

[7] J. Harris, (2005). ‘A Scalable & Extensible Peer-to-
Peer Network Simulator’, Ottawa-Carleton Institute for
Computer Science.

Figure 8. Analysing results of four methods for

average hops

Figure 7. Analysing results of four methods for

number of failures

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 606

https://code.google.com/p/gnutella-peersim/
https://code.google.com/p/gnutella-peersim/
https://code.google.com/p/gnutella-peersim/

[8] M. Baker and R. Lakhoo, (2007). ‘Peer-to-peer
simulators’, ACET University of Reading.

[9] M. Ripeanu, (2001). ‘Peer-to-Peer Architecture Case

Study: Gnutella Network’, The University of Chicago.

[10] P. Murthy, (2003). ‘GTKgREP - Design and
Implementation of a Gnutella-based Reputation
Management System’, North Carolina State University.

[11] V. Aggarwal, A. Feldmann and S. Mohr, (2005).
‘Implementation of a P2P system within a network
simulation framework’, Technische Universität München,
Germany.

[12] S. K. Dhurandher, S. Misra, M. S. Obaidat, I. Singh,
R. Agarwal & B. Bhambhani, (2009). ‘Simulating Peer-to-
Peer networks’, pp. 336–341, IEEE/ACS.

[13] G. Yutang, L. Wanli & L. Bin, (2007). "Improved
Resource Discovery Algorithm on Gnutella Based on P2P
Networks’, Control Conference, p. 599, IEEE.

[14] T. Lin and H. Wang, (2003). ‘Search Performance
Analysis in Peer-to-Peer Networks’, National Taiwan
University.

[15] M. Castro, M. Costa and A. Rowstron, (2003).
‘Should we build Gnutella on a structured overlay?‘,
Microsoft Research, Cambridge.

[16] A. Prakash, (2006). ‘A Survey of Advanced Search

in P2P Networks’, Department of Computer Science, Kent

State University.

[17] Keqin Li, (2010). ‘Performance analysis and
evaluation of random walk algorithms on wireless
networks’, Parallel & Distributed Processing, Workshops
and Phd Forum, IEEE, pp. 1–8.

[18] J. Cui, J. Guo, C. Zhang & X. Chang, (2012).
‘Implementation of random walk algorithm by parallel
computing’, 9th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), IEEE, pp.
2477–2481.

[19] D. Stutzbach, R. Rejaie. N. Duffield, S. Sen and W.
Willinger, (2009). ‘On unbiased sampling for unstructured
peer-to-peer networks’, IEEE/ACM Transactions on
Networking (TON) Journa, 17(2), IEEE/ACM, pp. 377–
390 .

[20] Gkantsidis, Christos, Milena Mihail and Amin Saberi,
(2004). ‘Random walks in peer-to-peer networks’ Twenty-
third AnnualJoint Conference of the IEEE Computer and
Communications Societies. IEEE.

International Journal for Information Security Research (IJISR), Volume 5, Issue 4, December 2015

Copyright © 2015, Infonomics Society 607

